A game theory approach for joint blind deconvolution and inpainting
dc.citation.epage | 681 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 674 | |
dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
dc.contributor.affiliation | Hassan II University of Casablanca | |
dc.contributor.author | Наср, Н. | |
dc.contributor.author | Муссаїд, Н. | |
dc.contributor.author | Гуаснуан, О. | |
dc.contributor.author | Nasr, N. | |
dc.contributor.author | Moussaid, N. | |
dc.contributor.author | Gouasnouane, O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T12:17:36Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У статті пропонується нова математична модель для спільного використання сліпої деконволюції та розфарбовування. Основною метою є обробка розмитих зображень з відсутніми частинами за допомогою теорії ігор, зокрема, гри Неша; визначено двох гравців: гравець 1 керує інтенсивністю зображення в той час як гравець 2 працює з ядром розмиття. Вони грають до тих пір, поки не буде досягнута рівновага. Нарешті, наведено деякі числові приклади: порівнюємо ефективність запропонованого нами підходу з іншими існуючими в літературі методами, які розглядають сліпу деконволюцію та розфарбовування окремо. | |
dc.description.abstract | In this paper we propose a new mathematical model for joint Blind Deconvolution and Inpainting. The main objective is the treatment of blurred images with missing parts, through the game theory framework, in particular, a Nash game, we define two players: Player 1 handles the image intensity while Player 2, operates on the blur kernel. The two engage in a game until the equilibrium is reached. Finally, we provide some numerical examples: we compare the efficiency of our proposed approach to other existing methods in the literature that deals with Blind Deconvolution and Inpainting separately. | |
dc.format.extent | 674-681 | |
dc.format.pages | 8 | |
dc.identifier.citation | Nasr N. A game theory approach for joint blind deconvolution and inpainting / N. Nasr, N. Moussaid, O. Gouasnouane // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 674–681. | |
dc.identifier.citationen | Nasr N. A game theory approach for joint blind deconvolution and inpainting / N. Nasr, N. Moussaid, O. Gouasnouane // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 674–681. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.03.674 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63540 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (10), 2023 | |
dc.relation.references | [1] Xu L., Zheng S., Jia J. Unnatural L0 Sparse Representation for Natural Image Deblurring. 2013 IEEE Conference on Computer Vision and Pattern Recognition. 1107–1114 (2013). | |
dc.relation.references | [2] Zhang G., Kingsbury N. Fast l0-based image deconvolution with variational Bayesian inference and majorization-minimization. IEEE Global Conference on Signal and Information Processing. 1081–1084 (2013). | |
dc.relation.references | [3] Xu L., Jia J. Two-phase kernel estimation for robust motion deblurring. European Conference on Computer Vision (ECCV 2010). 157–170 (2010). | |
dc.relation.references | [4] Lin Y., Kandel Y., Zotta M., Lifshin E. SEM Resolution improvement using semi-blind restoration with hybrid l1–l2 regularization. IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). 33–36 (2016). | |
dc.relation.references | [5] Huang Y., Ng M. K., Wen Y. W. A fast total variation minimization method for image restoration. Multiscale Modeling & Simulation. 7 (2), 774–795 (2008). | |
dc.relation.references | [6] Krishnan D., Tay T., Fergus R. Blind deconvolution using a normalized sparsity measure. CVPR 2011. 233–240 (2011). | |
dc.relation.references | [7] Li Z.-M., Zheng Y., Jing W.-F., Zhao R.-S., Jing K.-L. Hyper-Laplacian non-blind deblurring model based on regional division. 2015 International Conference on Network and Information Systems for Computers. 223–226 (2015). | |
dc.relation.references | [8] You Y.-L., Kaveh M. Blind image restoration by anisotropic regularization. IEEE Transactions on Image Processing. 8 (3), 396–407 (1999). | |
dc.relation.references | [9] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 12 (7), 629–639 (1990). | |
dc.relation.references | [10] Chan T. F., Wong C.-K. Total variation blind deconvolution. IEEE Transactions on Image Processing. 7 (3), 370–375 (1998). | |
dc.relation.references | [11] Liu H., Gu M., Meng M. Q.-H., Lu W.-S. Fast weighted total variation regularization algorithm for blur identification and image restoration. IEEE Access. 4, 6792–6801 (2016). | |
dc.relation.references | [12] Bertalmio M., Sapiro G., Caselles V., Ballester C. Image Inpainting. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 417–424 (2000). | |
dc.relation.references | [13] Criminisi A., Perez P., Toyama K. Region filling and object removal by exemplar-based image inpaintin. IEEE Transactions on Image Processing. 13 (9), 1200–1212 (2004). | |
dc.relation.references | [14] Getreuer P. Total Variation Inpainting using Split Bregman. Image Processing on Line. 2, 147–157 (2012). | |
dc.relation.references | [15] Esedoglu S., Shen J. Digital inpainting based on the Mumford–Shah–Euler image model. European Journal of Applied Mathematics. 13 (4), 353–370 (2002). | |
dc.relation.references | [16] Boujena S., Bellaj K., Gouasnouane O., El Guarmah E. An improved nonlinear model for image inpainting. Applied Mathematical Sciences. 9 (124), 6189–6205 (2015). | |
dc.relation.references | [17] Gouasnouane O., Moussaid N., Boujena S., Kabli K. A nonlinear fractional partial differential equation for image inpainting. Mathematical Modeling and Computing. 9 (3), 536–546 (2022). | |
dc.relation.references | [18] Caselles V., Morel J.-M., Sbert C. An axiomatic approach to image interpolation. IEEE Transactions on Image Processing Journal of Applied Mathematics. 7 (3), 376–386 (1998). | |
dc.relation.references | [19] Elmoumen S., Moussaid N., Aboulaich R. Image retrieval using Nash equilibrium and Kalai–Smorodinsky solution. Mathematical Modeling and Computing. 8 (4), 646–657 (2021). | |
dc.relation.references | [20] Meskine D., Moussaid N., Berhich S. Blind image deblurring by game theory. NISS19: Proceedings of the 2nd International Conference on Networking, Information Systems & Security. 1–7 (2019). | |
dc.relation.references | [21] Nasr N., Moussaid N., Gouasnouane O. A Nash-game approach to Blind Image Deblurring. 2021 Third International Conference on Transportation and Smart Technologies (TST). 36–41 (2021). | |
dc.relation.references | [22] Nasr N., Moussaid N., Gouasnouane O. The Kalai Smorodinsky solution for blind deconvolution. Computational and Applied Mathematics. 41 (5), 222 (2022). | |
dc.relation.references | [23] Chan T. F., Yip A. M., Park F. E. Simultaneous total variation image inpainting and blind deconvolution. International Journal of Imaging Systems and Technology. 15 (1), 92–102 (2005). | |
dc.relation.references | [24] Lagendijk R. L., Biemond J. Iterative Identification and Restoration of Images. Springer, New York (1991). | |
dc.relation.references | [25] Chen Y., Wunderli T. Adaptive total variation for image restoration in BV space. Journal of Mathematical Analysis and Applications. 272 (1), 117–137 (2002). | |
dc.relation.references | [26] Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing. 13 (4), 600–612 (2004). | |
dc.relation.references | [27] Yin M., Gao J., Tien D., Cai S. Blind image deblurring via coupled sparse representation. Journal of Visual Communication and Image Representation. 25 (5), 814–821 (2014). | |
dc.relation.referencesen | [1] Xu L., Zheng S., Jia J. Unnatural L0 Sparse Representation for Natural Image Deblurring. 2013 IEEE Conference on Computer Vision and Pattern Recognition. 1107–1114 (2013). | |
dc.relation.referencesen | [2] Zhang G., Kingsbury N. Fast l0-based image deconvolution with variational Bayesian inference and majorization-minimization. IEEE Global Conference on Signal and Information Processing. 1081–1084 (2013). | |
dc.relation.referencesen | [3] Xu L., Jia J. Two-phase kernel estimation for robust motion deblurring. European Conference on Computer Vision (ECCV 2010). 157–170 (2010). | |
dc.relation.referencesen | [4] Lin Y., Kandel Y., Zotta M., Lifshin E. SEM Resolution improvement using semi-blind restoration with hybrid l1–l2 regularization. IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). 33–36 (2016). | |
dc.relation.referencesen | [5] Huang Y., Ng M. K., Wen Y. W. A fast total variation minimization method for image restoration. Multiscale Modeling & Simulation. 7 (2), 774–795 (2008). | |
dc.relation.referencesen | [6] Krishnan D., Tay T., Fergus R. Blind deconvolution using a normalized sparsity measure. CVPR 2011. 233–240 (2011). | |
dc.relation.referencesen | [7] Li Z.-M., Zheng Y., Jing W.-F., Zhao R.-S., Jing K.-L. Hyper-Laplacian non-blind deblurring model based on regional division. 2015 International Conference on Network and Information Systems for Computers. 223–226 (2015). | |
dc.relation.referencesen | [8] You Y.-L., Kaveh M. Blind image restoration by anisotropic regularization. IEEE Transactions on Image Processing. 8 (3), 396–407 (1999). | |
dc.relation.referencesen | [9] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 12 (7), 629–639 (1990). | |
dc.relation.referencesen | [10] Chan T. F., Wong C.-K. Total variation blind deconvolution. IEEE Transactions on Image Processing. 7 (3), 370–375 (1998). | |
dc.relation.referencesen | [11] Liu H., Gu M., Meng M. Q.-H., Lu W.-S. Fast weighted total variation regularization algorithm for blur identification and image restoration. IEEE Access. 4, 6792–6801 (2016). | |
dc.relation.referencesen | [12] Bertalmio M., Sapiro G., Caselles V., Ballester C. Image Inpainting. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 417–424 (2000). | |
dc.relation.referencesen | [13] Criminisi A., Perez P., Toyama K. Region filling and object removal by exemplar-based image inpaintin. IEEE Transactions on Image Processing. 13 (9), 1200–1212 (2004). | |
dc.relation.referencesen | [14] Getreuer P. Total Variation Inpainting using Split Bregman. Image Processing on Line. 2, 147–157 (2012). | |
dc.relation.referencesen | [15] Esedoglu S., Shen J. Digital inpainting based on the Mumford–Shah–Euler image model. European Journal of Applied Mathematics. 13 (4), 353–370 (2002). | |
dc.relation.referencesen | [16] Boujena S., Bellaj K., Gouasnouane O., El Guarmah E. An improved nonlinear model for image inpainting. Applied Mathematical Sciences. 9 (124), 6189–6205 (2015). | |
dc.relation.referencesen | [17] Gouasnouane O., Moussaid N., Boujena S., Kabli K. A nonlinear fractional partial differential equation for image inpainting. Mathematical Modeling and Computing. 9 (3), 536–546 (2022). | |
dc.relation.referencesen | [18] Caselles V., Morel J.-M., Sbert C. An axiomatic approach to image interpolation. IEEE Transactions on Image Processing Journal of Applied Mathematics. 7 (3), 376–386 (1998). | |
dc.relation.referencesen | [19] Elmoumen S., Moussaid N., Aboulaich R. Image retrieval using Nash equilibrium and Kalai–Smorodinsky solution. Mathematical Modeling and Computing. 8 (4), 646–657 (2021). | |
dc.relation.referencesen | [20] Meskine D., Moussaid N., Berhich S. Blind image deblurring by game theory. NISS19: Proceedings of the 2nd International Conference on Networking, Information Systems & Security. 1–7 (2019). | |
dc.relation.referencesen | [21] Nasr N., Moussaid N., Gouasnouane O. A Nash-game approach to Blind Image Deblurring. 2021 Third International Conference on Transportation and Smart Technologies (TST). 36–41 (2021). | |
dc.relation.referencesen | [22] Nasr N., Moussaid N., Gouasnouane O. The Kalai Smorodinsky solution for blind deconvolution. Computational and Applied Mathematics. 41 (5), 222 (2022). | |
dc.relation.referencesen | [23] Chan T. F., Yip A. M., Park F. E. Simultaneous total variation image inpainting and blind deconvolution. International Journal of Imaging Systems and Technology. 15 (1), 92–102 (2005). | |
dc.relation.referencesen | [24] Lagendijk R. L., Biemond J. Iterative Identification and Restoration of Images. Springer, New York (1991). | |
dc.relation.referencesen | [25] Chen Y., Wunderli T. Adaptive total variation for image restoration in BV space. Journal of Mathematical Analysis and Applications. 272 (1), 117–137 (2002). | |
dc.relation.referencesen | [26] Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing. 13 (4), 600–612 (2004). | |
dc.relation.referencesen | [27] Yin M., Gao J., Tien D., Cai S. Blind image deblurring via coupled sparse representation. Journal of Visual Communication and Image Representation. 25 (5), 814–821 (2014). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | сліпа деконволюція | |
dc.subject | розфарбування | |
dc.subject | теорія ігор | |
dc.subject | blind deconvolution | |
dc.subject | inpainting | |
dc.subject | game theory | |
dc.title | A game theory approach for joint blind deconvolution and inpainting | |
dc.title.alternative | Підхід теорії ігор для спільної сліпої деконволюції та розфарбовування | |
dc.type | Article |
Files
License bundle
1 - 1 of 1