Фізико-хімічні дослідження структури гумінових кислот

dc.citation.epage26
dc.citation.issue1
dc.citation.spage22
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationВідділення фізико-хімії горючих копалин ІнФОВ ім. Л. М. Литвиненка НАН України
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationDepartment of Physical Chemistry of Fossil Fuels In POCCC, National Academy of Sciences of Ukraine
dc.contributor.authorКочубей, В. В.
dc.contributor.authorСеменюк, І. В.
dc.contributor.authorКарпенко, О. В.
dc.contributor.authorСкорохода, В. Й.
dc.contributor.authorKochubei, V.
dc.contributor.authorSemeniuk, I.
dc.contributor.authorKarpenko, O.
dc.contributor.authorSkorokhoda, V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2021-01-28T11:24:20Z
dc.date.available2021-01-28T11:24:20Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractНа основі комплексного термічного, титриметричного та УФ/Віз-спектрального аналізів досліджено структуру та визначено вміст функціональних груп у молекулах гумінових кислот, одержаних із різної сировини – копроліту, торфу та леонардиту. Термічну стійкість речовин досліджено в повітряному середовищі в інтервалі температур 20–1000 °С. Виявлено, що в гумінових кислотах, одержаних із різної сировини, вміст аліфатичної складової є переважаючим. Зразок гумінової кислоти, отриманий із копроліту, відзначається найбільшим вмістом аліфатичних фрагментів та підвищеним вмістом кислотних груп.
dc.description.abstractBased on the complex thermal, titrimetric and UV/Vis spectral analyzes, the structure and the content of functional groups in the molecules of humic acids obtained from different raw materials – coprolite, peat and leonardite – were investigated. The thermal stability of the substances was investigated in the air in the temperature range 20–1000 °C. It has been found that the content of the aliphatic component is predominant in humic acids obtained from different raw materials. A sample of humic acid obtained from coprolite has the highest content of aliphatic fragments and increased content of acid groups.
dc.format.extent22-26
dc.format.pages5
dc.identifier.citationФізико-хімічні дослідження структури гумінових кислот / В. В. Кочубей, І. В. Семенюк, О. В. Карпенко, В. Й. Скорохода // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 22–26.
dc.identifier.citationenPhysical and chemical researches on the structure of humic acids / V. Kochubei, I. Semeniuk, O. Karpenko, V. Skorokhoda // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 22–26.
dc.identifier.doidoi.org/10.23939/ctas2020.01.022
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56094
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.relation.references1. Romenskyi V. Yu. (2011). Vplyv zroshennia I mineralnoho udobrennia na riven rodiuchosti gruntu pryvyroshchuvanipolovykh kultur v umovakh pivdennoho Stepu Ukrainy. Biul. In-tu silsk. hosp-va stepovoi zony, 1, 140–144 (in Ukrainian).
dc.relation.references2. Piccolo A. (2002). The Supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57–134.
dc.relation.references3. Horovaia A. Y., Orlov D. S., Shcherbenko O. V. (1995). Humynovue veshchestva. Stroenye, funktsyy, mekhanizm deistvyia, protektorne svoistva, ekolohycheskaia rol. Kyev: Naukova Dumka (in Ukrainian).
dc.relation.references4. Bozkurt S., Lucisano M., Moreno L., Neretnieks I. (2001). Peat as a potential analogue for the long-term evolution in landfills. Earth-ScienceReviews, 53, 95–147.
dc.relation.references5. Tytov Y. N. (2009). Patent RF. 2009126851. Moskva: Reestr patentov na yzobretenyia Rossyiskoi Federatsyy [in Russian].
dc.relation.references6. Luchnyk N. A., Ivanov A. E., Merkulov A. I. (1997). Humaty natriiu na posivakh zernovykh kultur. Khymyia v selskom khoziaistve, 2, 28–30 (inUkrainian).
dc.relation.references7. Butaev B. S., Zoltoev E. V., Bodoev N. V., Bukov Y. P., Dashytsurenova A.D. Otsenka fyzyolohycheskoi aktyvnosty humynovukh veshchestv okyslennukh uhlei. Khymyia v ynteresakh ustoichyvoho razvytyia, 13(4), 501–50 [in Russian].
dc.relation.references8. Harmash S. M. (2009). Vplyv naturalnoho stymuliatora roslyn biohumatu na vrozhainist ovochevykh kultur. Visnyk Dnipropetrovskoho derzhavnoho ahrarnoho universytetu, 1, 47–50 (in Ukrainian).
dc.relation.references9. Chukhareva N. V., Shyshmyna L. V., Novykov A. A. (2003). Vlyianye termoobrabotky torfa na sostav y svoistva humynovukh kyslot. Khymyia tverdoho toplyva, 4, 38–44 [in Russian].
dc.relation.references10. Helen Lavrenyuk, Victoria Kochubei, Oleg Mykhalichko, Borys Mykhalichko (2018). Metal – coor dinated epoxy polymers with suppressed combustibility. Preparation technology, thermal degradation, and combustibility test of new epoxy – amine polymers containing the curing agent with chelated copper(II) carbonate. Fire and Materials, 42(3), 266–277.
dc.relation.references11. Eshwar M., Srilatha M., Bhanu Rekha K., Harish Kumar Sharma S. (2017). Characterization of Humic Substances by Functional Groups and Spectroscopic Methods. International Jornal Current Microbiology Applied Sciences, 6(10), 1768–1774.
dc.relation.references12. Souza F., Bragança S. R. (2018) Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. Journal of Materials Research and Technology, 7(3), 254–260.
dc.relation.references13. Haddad G., Ali F. E., Mouneimne A. H. (2015). Humicmatterofcompost: determination of humic spectroscopic ratio (E4/E6). Current Science International, 4(1), 56–72.
dc.relation.references14. Permynova Y. V. (2020). Analyz, klassyfykatsyiayprohnozsvoistvhumynovukhkyslot [Analysis, classification and prediction of humic acid properties] (Doctor’s thesis). Moskva [in Russian].
dc.relation.referencesen1. Romenskyi V. Yu. (2011). Vplyv zroshennia I mineralnoho udobrennia na riven rodiuchosti gruntu pryvyroshchuvanipolovykh kultur v umovakh pivdennoho Stepu Ukrainy. Biul. In-tu silsk. hosp-va stepovoi zony, 1, 140–144 (in Ukrainian).
dc.relation.referencesen2. Piccolo A. (2002). The Supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57–134.
dc.relation.referencesen3. Horovaia A. Y., Orlov D. S., Shcherbenko O. V. (1995). Humynovue veshchestva. Stroenye, funktsyy, mekhanizm deistvyia, protektorne svoistva, ekolohycheskaia rol. Kyev: Naukova Dumka (in Ukrainian).
dc.relation.referencesen4. Bozkurt S., Lucisano M., Moreno L., Neretnieks I. (2001). Peat as a potential analogue for the long-term evolution in landfills. Earth-ScienceReviews, 53, 95–147.
dc.relation.referencesen5. Tytov Y. N. (2009). Patent RF. 2009126851. Moskva: Reestr patentov na yzobretenyia Rossyiskoi Federatsyy [in Russian].
dc.relation.referencesen6. Luchnyk N. A., Ivanov A. E., Merkulov A. I. (1997). Humaty natriiu na posivakh zernovykh kultur. Khymyia v selskom khoziaistve, 2, 28–30 (inUkrainian).
dc.relation.referencesen7. Butaev B. S., Zoltoev E. V., Bodoev N. V., Bukov Y. P., Dashytsurenova A.D. Otsenka fyzyolohycheskoi aktyvnosty humynovukh veshchestv okyslennukh uhlei. Khymyia v ynteresakh ustoichyvoho razvytyia, 13(4), 501–50 [in Russian].
dc.relation.referencesen8. Harmash S. M. (2009). Vplyv naturalnoho stymuliatora roslyn biohumatu na vrozhainist ovochevykh kultur. Visnyk Dnipropetrovskoho derzhavnoho ahrarnoho universytetu, 1, 47–50 (in Ukrainian).
dc.relation.referencesen9. Chukhareva N. V., Shyshmyna L. V., Novykov A. A. (2003). Vlyianye termoobrabotky torfa na sostav y svoistva humynovukh kyslot. Khymyia tverdoho toplyva, 4, 38–44 [in Russian].
dc.relation.referencesen10. Helen Lavrenyuk, Victoria Kochubei, Oleg Mykhalichko, Borys Mykhalichko (2018). Metal – coor dinated epoxy polymers with suppressed combustibility. Preparation technology, thermal degradation, and combustibility test of new epoxy – amine polymers containing the curing agent with chelated copper(II) carbonate. Fire and Materials, 42(3), 266–277.
dc.relation.referencesen11. Eshwar M., Srilatha M., Bhanu Rekha K., Harish Kumar Sharma S. (2017). Characterization of Humic Substances by Functional Groups and Spectroscopic Methods. International Jornal Current Microbiology Applied Sciences, 6(10), 1768–1774.
dc.relation.referencesen12. Souza F., Bragança S. R. (2018) Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. Journal of Materials Research and Technology, 7(3), 254–260.
dc.relation.referencesen13. Haddad G., Ali F. E., Mouneimne A. H. (2015). Humicmatterofcompost: determination of humic spectroscopic ratio (E4/E6). Current Science International, 4(1), 56–72.
dc.relation.referencesen14. Permynova Y. V. (2020). Analyz, klassyfykatsyiayprohnozsvoistvhumynovukhkyslot [Analysis, classification and prediction of humic acid properties] (Doctor’s thesis). Moskva [in Russian].
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectгумінові кислоти
dc.subjectбіополімери
dc.subjectтермічний аналіз
dc.subjectУФ/Віз-спектроскопія
dc.subjecthumic acids
dc.subjectbiopolymers
dc.subjectthermal analysis
dc.subjectUV/Vis spectroscopy
dc.titleФізико-хімічні дослідження структури гумінових кислот
dc.title.alternativePhysical and chemical researches on the structure of humic acids
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v3n1_Kochubei_V-Physical_and_chemical_researches_22-26.pdf
Size:
522.78 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v3n1_Kochubei_V-Physical_and_chemical_researches_22-26__COVER.png
Size:
462.72 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.08 KB
Format:
Plain Text
Description: