Investigation of sorption/desorption processes of medical substances by combined hydrogels

dc.citation.epage158
dc.citation.issue2
dc.citation.spage154
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМайкович, О. В.
dc.contributor.authorНосова, Н. Г.
dc.contributor.authorБорденюк, О. Ю.
dc.contributor.authorФігурка, Н. В.
dc.contributor.authorВарваренко, С. М.
dc.contributor.authorMaikovych, O. V.
dc.contributor.authorNosova, N. G.
dc.contributor.authorBordenyuk, O. Yu.
dc.contributor.authorFihurka, N. V.
dc.contributor.authorVarvarenko, S. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T09:14:40Z
dc.date.available2020-03-02T09:14:40Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractНаведено результати досліджень щодо сорбції та десорбції комбінованими поліакриламід- желатиновими гідрогелями новокаїну та лідокаїну. Показано, що сорбція/десорбція гідрогелями проходить з різною швидкістю залежно від будови та наявності функціональних груп у структурі речовин, що сорбуються. Під час дослідження десорбції лікарських речовин з полімерної матриці гідрогелю встановлено, що вивільнення новокаїну та лідокаїну відбувається доволі тривалий час, що може забезпечити їх пролонговану доставку. Розроблені гідрогелеві матеріали можуть бути використані в косметології і медицині як трансдермальні системи доставки ліків.
dc.description.abstractThe article represents the results of studies of sorption and desorption of novocaine and lidocaine by combined polyacrylamide gelatinous hydrogels. The rates of sorption by hydrogels are different, depending on the structure and the presence of functional groups in the structure of absorbed substances. The study of the desorption of medicinal substances from the polymeric matrix of hydrogel showed that release of novocaine and lidocaine lasts for a long time, which can ensure their prolonged delivery. Developed hydrogel materials can be used in cosmetology and medicine, as transdermal drug delivery systems.
dc.format.extent154-158
dc.format.pages5
dc.identifier.citationInvestigation of sorption/desorption processes of medical substances by combined hydrogels / O. V. Maikovych, N. G. Nosova, O. Yu. Bordenyuk, N. V. Fihurka, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 154–158.
dc.identifier.citationenInvestigation of sorption/desorption processes of medical substances by combined hydrogels / O. V. Maikovych, N. G. Nosova, O. Yu. Bordenyuk, N. V. Fihurka, S. M. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 154–158.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46401
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (2), 2019
dc.relation.references1. Chai, Q., Jiao, Y, Yu, X.. (2017). Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels, 3(6), 1-15.
dc.relation.references2. Hennink, W., Van Nostrum, C. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223-236.
dc.relation.references3. Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science, 336 (6085), 1124–1128.
dc.relation.references4. Hamidi, M., Azadi, A., Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60, 1638-1649.
dc.relation.references5. Vasilev, A. E., Krasnyuk, I. I., Ravikumar, S. (2001). Transdermalnyie terapevticheskie sistemyi dostavki lekarstvennyih veschestv. Himikofarmatsevticheskiy zhurnal, 35(11), 29-42.
dc.relation.references6. Samchenko, Yu. M., Pasmurtseva, N. A., Ulberg Z. R. (2007). Diffuziya lekarstvennyih preparatov iz gidrogelevyih nanoreaktorov. Dopovidi NAN Ukrayini, 6, 143-148.
dc.relation.references7. Sekine, Y.,Moritani, Y., Fukazawa, T. I., Sasaki, Y., Akiyoshi, K. (2012). A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Advanced healthcare materials, 1(6), 722-728.
dc.relation.references8. Wen Zhao, Jin Xing, Cong Yang, Liu Yuying, Fu Jun. (2013). Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology & Biotechnology, 88(3), 327-339.
dc.relation.references9. Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H.,. Dixon, B, Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advаnces, 35(5), 530-544.
dc.relation.references10. J. Tavakoli, Y. Tang Honey. (2017). PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in vitro biomedical studies. Materials Science and Engineering, 77, 318–325.
dc.relation.references11. J. Ramshaw, J. Werkmeister, V. Glatteur. (1995). Collagen based biomaterials. Biotechnol. Rev.,13, 336-382.
dc.relation.references12. Amir K. Miri, Hossein Goodarzi, Berivan Cecen, Shabir Hassan, Yu Shrike Zhang. (2018). Permeability mapping of gelatin methacryloyl hydrogels. Acta Biomaterialia,77, 38-47.
dc.relation.references13. Nosova, N. G., Samarik, V. Yа., Varvarenko, S. M., Ferens, M. V., Voronovska, A. V., Nagornyak, M. І., Homyak, S. V., Nadashkevich, Z. Yа., Voronov, S. A. (2016). Polyacrylamide porous hydrogels – preparation and properties Voprosyi himii i himicheskoy tehnologiі, 5-6, 78-86.
dc.relation.references14. Lavrova, I.S. (1983). Praktikum po kolloidnoy himii. Moscow., Vyisshaya shkola.
dc.relation.references15. Samchenko, Yu. M., Pasmurtseva, N. A., Ulberg, Z. R. (2010). Primenenie uf-spektroskopii dlya izucheniya diffuzii lekarstvennyih soedineniy iz gidrogeley meditsinskogo. Jurnal hromatografіchnogo tovaristva,10(1), 4-24.
dc.relation.referencesen1. Chai, Q., Jiao, Y, Yu, X.. (2017). Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels, 3(6), 1-15.
dc.relation.referencesen2. Hennink, W., Van Nostrum, C. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223-236.
dc.relation.referencesen3. Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science, 336 (6085), 1124–1128.
dc.relation.referencesen4. Hamidi, M., Azadi, A., Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60, 1638-1649.
dc.relation.referencesen5. Vasilev, A. E., Krasnyuk, I. I., Ravikumar, S. (2001). Transdermalnyie terapevticheskie sistemyi dostavki lekarstvennyih veschestv. Himikofarmatsevticheskiy zhurnal, 35(11), 29-42.
dc.relation.referencesen6. Samchenko, Yu. M., Pasmurtseva, N. A., Ulberg Z. R. (2007). Diffuziya lekarstvennyih preparatov iz gidrogelevyih nanoreaktorov. Dopovidi NAN Ukrayini, 6, 143-148.
dc.relation.referencesen7. Sekine, Y.,Moritani, Y., Fukazawa, T. I., Sasaki, Y., Akiyoshi, K. (2012). A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Advanced healthcare materials, 1(6), 722-728.
dc.relation.referencesen8. Wen Zhao, Jin Xing, Cong Yang, Liu Yuying, Fu Jun. (2013). Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology & Biotechnology, 88(3), 327-339.
dc.relation.referencesen9. Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H.,. Dixon, B, Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530-544.
dc.relation.referencesen10. J. Tavakoli, Y. Tang Honey. (2017). PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in vitro biomedical studies. Materials Science and Engineering, 77, 318–325.
dc.relation.referencesen11. J. Ramshaw, J. Werkmeister, V. Glatteur. (1995). Collagen based biomaterials. Biotechnol. Rev.,13, 336-382.
dc.relation.referencesen12. Amir K. Miri, Hossein Goodarzi, Berivan Cecen, Shabir Hassan, Yu Shrike Zhang. (2018). Permeability mapping of gelatin methacryloyl hydrogels. Acta Biomaterialia,77, 38-47.
dc.relation.referencesen13. Nosova, N. G., Samarik, V. Ya., Varvarenko, S. M., Ferens, M. V., Voronovska, A. V., Nagornyak, M. I., Homyak, S. V., Nadashkevich, Z. Ya., Voronov, S. A. (2016). Polyacrylamide porous hydrogels – preparation and properties Voprosyi himii i himicheskoy tehnologii, 5-6, 78-86.
dc.relation.referencesen14. Lavrova, I.S. (1983). Praktikum po kolloidnoy himii. Moscow., Vyisshaya shkola.
dc.relation.referencesen15. Samchenko, Yu. M., Pasmurtseva, N. A., Ulberg, Z. R. (2010). Primenenie uf-spektroskopii dlya izucheniya diffuzii lekarstvennyih soedineniy iz gidrogeley meditsinskogo. Jurnal hromatografichnogo tovaristva,10(1), 4-24.
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.subjectгідрогель
dc.subjectколаген
dc.subjectжелатин
dc.subjectсорбція
dc.subjectновокаїн
dc.subjectлідокаїн
dc.subjecthydrogel
dc.subjectcollagen
dc.subjectgelatin
dc.subjectsorption
dc.subjectnovocaine
dc.subjectlidocaine
dc.titleInvestigation of sorption/desorption processes of medical substances by combined hydrogels
dc.title.alternativeДослідження процесів сорбції/десорбції лікарських речовин комбінованими гідрогелями
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v2n2_Maikovych_O_V-Investigation_of_sorption_154-158.pdf
Size:
319.91 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v2n2_Maikovych_O_V-Investigation_of_sorption_154-158__COVER.png
Size:
461.59 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.13 KB
Format:
Plain Text
Description: