Influence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials

dc.citation.epage464
dc.citation.issue3
dc.citation.spage454
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут фізики конденсованих систем НАН України
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
dc.contributor.authorЛевицький, Р. Р.
dc.contributor.authorЗачек, І. Р.
dc.contributor.authorВдович, А. С.
dc.contributor.authorБіленька, О. Б.
dc.contributor.authorLevitskii, R. R.
dc.contributor.authorZachek, I. R.
dc.contributor.authorVdovych, A. S.
dc.contributor.authorBilenka, O. B.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-25T07:19:03Z
dc.date.available2023-10-25T07:19:03Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractДля дослідження ефектів, що виникають під дією одновісного тиску p2 і електричних полів E1 та E3, використано модифіковану модель GPI шляхом врахування п’єзоелектричного зв’язку структурних елементів, які впорядковуються, з деформаціями εj . В наближенні двочастинкового кластера розраховано вектори поляризації та компоненти тензора статичної діелектричної проникності механічно затиснутого кристала, їх п’єзоелектричні та теплові характеристики. Досліджено одночасну дію тиску p2 і полів E1 та E3 на фазовий перехід та фізичні характеристики кристала.
dc.description.abstractA modified GPI model that accounts for the piezoelectric coupling between the ordered structural elements and the strains εj has been used for studing of effects arising in GPI ferroelectrics under the action of the uniaxial stress p2 and electric fields E1 and E3. The polarization vectors and components of static dielectric permittivity are calcucated in the two-particle cluster approximation for mechanically clamped crystal, and piezoelectric and thermal parameters are also determined. The influence of the simultaneous action of the stress p2 and fields E1 and E3 on the phase transition and physical characteristics of GPI crystal has been studied.
dc.format.extent454-464
dc.format.pages11
dc.identifier.citationInfluence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials / R. R. Levitskii, I. R. Zachek, A. S. Vdovych, O. B. Bilenka // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 454–464.
dc.identifier.citationenInfluence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials / R. R. Levitskii, I. R. Zachek, A. S. Vdovych, O. B. Bilenka // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 454–464.
dc.identifier.doidoi.org/10.23939/mmc2021.03.454
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60399
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 3 (8), 2021
dc.relation.references[1] Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996).
dc.relation.references[2] Stasyuk I., Czapla Z., Dacko S., Velychko O. Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: the GPI crystal. Condens. Matter Phys. 6 (3), 483–498 (2003).
dc.relation.references[3] Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys.: Condens. Matter. 16 (12), 1963–1979, (2004).
dc.relation.references[4] Stasyuk I., Velychko O. Theory of Electric Field Influence on Phase Transition in Glycine Phosphite. Ferroelectrics. 300 (1), 121–124 (2004).
dc.relation.references[5] Zachek I. R., Shchur Ya., Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017).
dc.relation.references[6] Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on dielectric properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017).
dc.relation.references[7] Vdovych A., Zachek I., Levitskii R. Calculation of transverse piezoelectric characteristics of quasi-onedimensional glycine phosphite ferroelectric. Mathematical Modeling and Computing. 5 (2), 242–252 (2018).
dc.relation.references[8] Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018).
dc.relation.references[9] Nayeem J., Kikuta T., Nakatani N., Matsui F., Takeda S.-N., Hattori K., Daimon H. Ferroelectric Phase Transition Character of Glycine Phosphite. Ferroelectrics. 332 (1), 13–19 (2006).
dc.relation.references[10] Shikanai F., Hatori J., Komukae M., Czapla Z., Osaka T. Heat Capacity and Thermal Expansion of NH3CH2COOH·H2PO3. J. Phys. Soc. Jpn. 73 (7), 1812–1815 (2004).
dc.relation.references[11] Wiesner M. Piezoelectric properties of GPI crystals. Phys. Stat. Sol (b). 238 (1), 68–74 (2003).
dc.relation.references[12] Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys.: Condens Matter. 9 (23), L347–L350 (1997).
dc.relation.references[13] Yasuda N., Kaneda A., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in deuterated glycinium phosphite crystals. J. Phys.: Condens Matter. 9 (33), L447–L450 (1997).
dc.relation.references[14] Nayeem J., Wakabayashi H., Kikuta T., Yamazaki T., Nakatani N. Ferroelectric Properties of Deuterated Glycine Phosphite. Ferroelectrics. 269, 153–158 (2002).
dc.relation.referencesen[1] Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996).
dc.relation.referencesen[2] Stasyuk I., Czapla Z., Dacko S., Velychko O. Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: the GPI crystal. Condens. Matter Phys. 6 (3), 483–498 (2003).
dc.relation.referencesen[3] Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys., Condens. Matter. 16 (12), 1963–1979, (2004).
dc.relation.referencesen[4] Stasyuk I., Velychko O. Theory of Electric Field Influence on Phase Transition in Glycine Phosphite. Ferroelectrics. 300 (1), 121–124 (2004).
dc.relation.referencesen[5] Zachek I. R., Shchur Ya., Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017).
dc.relation.referencesen[6] Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on dielectric properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017).
dc.relation.referencesen[7] Vdovych A., Zachek I., Levitskii R. Calculation of transverse piezoelectric characteristics of quasi-onedimensional glycine phosphite ferroelectric. Mathematical Modeling and Computing. 5 (2), 242–252 (2018).
dc.relation.referencesen[8] Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018).
dc.relation.referencesen[9] Nayeem J., Kikuta T., Nakatani N., Matsui F., Takeda S.-N., Hattori K., Daimon H. Ferroelectric Phase Transition Character of Glycine Phosphite. Ferroelectrics. 332 (1), 13–19 (2006).
dc.relation.referencesen[10] Shikanai F., Hatori J., Komukae M., Czapla Z., Osaka T. Heat Capacity and Thermal Expansion of NH3CH2COOH·H2PO3. J. Phys. Soc. Jpn. 73 (7), 1812–1815 (2004).
dc.relation.referencesen[11] Wiesner M. Piezoelectric properties of GPI crystals. Phys. Stat. Sol (b). 238 (1), 68–74 (2003).
dc.relation.referencesen[12] Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys., Condens Matter. 9 (23), L347–L350 (1997).
dc.relation.referencesen[13] Yasuda N., Kaneda A., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in deuterated glycinium phosphite crystals. J. Phys., Condens Matter. 9 (33), L447–L450 (1997).
dc.relation.referencesen[14] Nayeem J., Wakabayashi H., Kikuta T., Yamazaki T., Nakatani N. Ferroelectric Properties of Deuterated Glycine Phosphite. Ferroelectrics. 269, 153–158 (2002).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectсегнетоелектрики
dc.subjectфазовий перехід
dc.subjectдіелектрична проникність
dc.subjectп’єзомодулі
dc.subjectзсувна напруга
dc.subjectferroelectrics
dc.subjectphase transition
dc.subjectdielectric permittivity
dc.subjectpiezoelectric modules
dc.subjectshear stress
dc.titleInfluence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials
dc.title.alternativeВплив одновісного тиску p2 та поперечних полів E1 і E3 на фазові переходи та термодинамічні характеристики сегнетоактивних матеріалів GPI
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v8n3_Levitskii_R_R-Influence_of_the_uniaxial_454-464.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v8n3_Levitskii_R_R-Influence_of_the_uniaxial_454-464__COVER.png
Size:
429.15 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: