Influence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials
dc.citation.epage | 464 | |
dc.citation.issue | 3 | |
dc.citation.spage | 454 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Інститут фізики конденсованих систем НАН України | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine | |
dc.contributor.author | Левицький, Р. Р. | |
dc.contributor.author | Зачек, І. Р. | |
dc.contributor.author | Вдович, А. С. | |
dc.contributor.author | Біленька, О. Б. | |
dc.contributor.author | Levitskii, R. R. | |
dc.contributor.author | Zachek, I. R. | |
dc.contributor.author | Vdovych, A. S. | |
dc.contributor.author | Bilenka, O. B. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-10-25T07:19:03Z | |
dc.date.available | 2023-10-25T07:19:03Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Для дослідження ефектів, що виникають під дією одновісного тиску p2 і електричних полів E1 та E3, використано модифіковану модель GPI шляхом врахування п’єзоелектричного зв’язку структурних елементів, які впорядковуються, з деформаціями εj . В наближенні двочастинкового кластера розраховано вектори поляризації та компоненти тензора статичної діелектричної проникності механічно затиснутого кристала, їх п’єзоелектричні та теплові характеристики. Досліджено одночасну дію тиску p2 і полів E1 та E3 на фазовий перехід та фізичні характеристики кристала. | |
dc.description.abstract | A modified GPI model that accounts for the piezoelectric coupling between the ordered structural elements and the strains εj has been used for studing of effects arising in GPI ferroelectrics under the action of the uniaxial stress p2 and electric fields E1 and E3. The polarization vectors and components of static dielectric permittivity are calcucated in the two-particle cluster approximation for mechanically clamped crystal, and piezoelectric and thermal parameters are also determined. The influence of the simultaneous action of the stress p2 and fields E1 and E3 on the phase transition and physical characteristics of GPI crystal has been studied. | |
dc.format.extent | 454-464 | |
dc.format.pages | 11 | |
dc.identifier.citation | Influence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials / R. R. Levitskii, I. R. Zachek, A. S. Vdovych, O. B. Bilenka // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 454–464. | |
dc.identifier.citationen | Influence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials / R. R. Levitskii, I. R. Zachek, A. S. Vdovych, O. B. Bilenka // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 454–464. | |
dc.identifier.doi | doi.org/10.23939/mmc2021.03.454 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60399 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (8), 2021 | |
dc.relation.references | [1] Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996). | |
dc.relation.references | [2] Stasyuk I., Czapla Z., Dacko S., Velychko O. Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: the GPI crystal. Condens. Matter Phys. 6 (3), 483–498 (2003). | |
dc.relation.references | [3] Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys.: Condens. Matter. 16 (12), 1963–1979, (2004). | |
dc.relation.references | [4] Stasyuk I., Velychko O. Theory of Electric Field Influence on Phase Transition in Glycine Phosphite. Ferroelectrics. 300 (1), 121–124 (2004). | |
dc.relation.references | [5] Zachek I. R., Shchur Ya., Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017). | |
dc.relation.references | [6] Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on dielectric properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017). | |
dc.relation.references | [7] Vdovych A., Zachek I., Levitskii R. Calculation of transverse piezoelectric characteristics of quasi-onedimensional glycine phosphite ferroelectric. Mathematical Modeling and Computing. 5 (2), 242–252 (2018). | |
dc.relation.references | [8] Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018). | |
dc.relation.references | [9] Nayeem J., Kikuta T., Nakatani N., Matsui F., Takeda S.-N., Hattori K., Daimon H. Ferroelectric Phase Transition Character of Glycine Phosphite. Ferroelectrics. 332 (1), 13–19 (2006). | |
dc.relation.references | [10] Shikanai F., Hatori J., Komukae M., Czapla Z., Osaka T. Heat Capacity and Thermal Expansion of NH3CH2COOH·H2PO3. J. Phys. Soc. Jpn. 73 (7), 1812–1815 (2004). | |
dc.relation.references | [11] Wiesner M. Piezoelectric properties of GPI crystals. Phys. Stat. Sol (b). 238 (1), 68–74 (2003). | |
dc.relation.references | [12] Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys.: Condens Matter. 9 (23), L347–L350 (1997). | |
dc.relation.references | [13] Yasuda N., Kaneda A., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in deuterated glycinium phosphite crystals. J. Phys.: Condens Matter. 9 (33), L447–L450 (1997). | |
dc.relation.references | [14] Nayeem J., Wakabayashi H., Kikuta T., Yamazaki T., Nakatani N. Ferroelectric Properties of Deuterated Glycine Phosphite. Ferroelectrics. 269, 153–158 (2002). | |
dc.relation.referencesen | [1] Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996). | |
dc.relation.referencesen | [2] Stasyuk I., Czapla Z., Dacko S., Velychko O. Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: the GPI crystal. Condens. Matter Phys. 6 (3), 483–498 (2003). | |
dc.relation.referencesen | [3] Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys., Condens. Matter. 16 (12), 1963–1979, (2004). | |
dc.relation.referencesen | [4] Stasyuk I., Velychko O. Theory of Electric Field Influence on Phase Transition in Glycine Phosphite. Ferroelectrics. 300 (1), 121–124 (2004). | |
dc.relation.referencesen | [5] Zachek I. R., Shchur Ya., Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017). | |
dc.relation.referencesen | [6] Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on dielectric properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017). | |
dc.relation.referencesen | [7] Vdovych A., Zachek I., Levitskii R. Calculation of transverse piezoelectric characteristics of quasi-onedimensional glycine phosphite ferroelectric. Mathematical Modeling and Computing. 5 (2), 242–252 (2018). | |
dc.relation.referencesen | [8] Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018). | |
dc.relation.referencesen | [9] Nayeem J., Kikuta T., Nakatani N., Matsui F., Takeda S.-N., Hattori K., Daimon H. Ferroelectric Phase Transition Character of Glycine Phosphite. Ferroelectrics. 332 (1), 13–19 (2006). | |
dc.relation.referencesen | [10] Shikanai F., Hatori J., Komukae M., Czapla Z., Osaka T. Heat Capacity and Thermal Expansion of NH3CH2COOH·H2PO3. J. Phys. Soc. Jpn. 73 (7), 1812–1815 (2004). | |
dc.relation.referencesen | [11] Wiesner M. Piezoelectric properties of GPI crystals. Phys. Stat. Sol (b). 238 (1), 68–74 (2003). | |
dc.relation.referencesen | [12] Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys., Condens Matter. 9 (23), L347–L350 (1997). | |
dc.relation.referencesen | [13] Yasuda N., Kaneda A., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in deuterated glycinium phosphite crystals. J. Phys., Condens Matter. 9 (33), L447–L450 (1997). | |
dc.relation.referencesen | [14] Nayeem J., Wakabayashi H., Kikuta T., Yamazaki T., Nakatani N. Ferroelectric Properties of Deuterated Glycine Phosphite. Ferroelectrics. 269, 153–158 (2002). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | сегнетоелектрики | |
dc.subject | фазовий перехід | |
dc.subject | діелектрична проникність | |
dc.subject | п’єзомодулі | |
dc.subject | зсувна напруга | |
dc.subject | ferroelectrics | |
dc.subject | phase transition | |
dc.subject | dielectric permittivity | |
dc.subject | piezoelectric modules | |
dc.subject | shear stress | |
dc.title | Influence of the uniaxial stress p2 and transverse fields E1 and E3 on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials | |
dc.title.alternative | Вплив одновісного тиску p2 та поперечних полів E1 і E3 на фазові переходи та термодинамічні характеристики сегнетоактивних матеріалів GPI | |
dc.type | Article |
Files
License bundle
1 - 1 of 1