Stability of carbon monoxide oxidation process on gold nanoparticles

dc.citation.epage124
dc.citation.issue1
dc.citation.spage116
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКостробій, П. П.
dc.contributor.authorРижа, І. А.
dc.contributor.authorKostrobij, P. P.
dc.contributor.authorRyzha, I. A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-03T09:31:44Z
dc.date.available2023-10-03T09:31:44Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractДосліджено умови стійкості математичних моделей окиснення монооксиду вуглецю на поверхні наночастинок золота. Послідовно розглянуто випадки реакційних механізмів одноетапного та поетапного перетворення реагентів. За допомогою аналізу стійкості методом Ляпунова показано, що моделі, які враховують можливість структурних змін поверхні каталізатора, дозволяють змоделювати виникнення автоколивань у системі, які є результатом нестійкості Хопфа.
dc.description.abstractThe stability conditions for mathematical models of carbon monoxide oxidation on the surface of gold nanoparticles are investigated. The cases of reaction mechanisms of one step and step-by-step transformation of reagents are consecutively considered. Using the stability analysis by Lyapunov method, it is shown that models which take into account the possibility of structural changes of the catalyst surface can predict the occurrence of oscillatory mode in the system as a result of Hopf instability.
dc.format.extent116-124
dc.format.pages9
dc.identifier.citationKostrobij P. P. Stability of carbon monoxide oxidation process on gold nanoparticles / P. P. Kostrobij, I. A. Ryzha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 1. — P. 116–124.
dc.identifier.citationenKostrobij P. P. Stability of carbon monoxide oxidation process on gold nanoparticles / P. P. Kostrobij, I. A. Ryzha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 1. — P. 116–124.
dc.identifier.doidoi.org/10.23939/mmc2021.01.116
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60323
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (8), 2021
dc.relation.references[1] Freund H.-J., Meijer G., Scheffler M., Schlogl R., Wolf M. CO oxidation as a prototypical reaction for heterogeneous processes. Angewandte Chemie International Edition. 50 (43), 10064–10094 (2011).
dc.relation.references[2] Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. Journal of Chemical Physics. 9.
dc.relation.references[3] Haruta M., Kobayashi T., Sano H., Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0◦C. Chemistry Letters. 16 (2), 405–408 (1987).
dc.relation.references[4] Valden M., Lai X., Goodman D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 281 (5383), 1647–1650 (1998).
dc.relation.references[5] Ryzha I., Matseliukh M. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Mathematical Modeling and Computing. 4 (1), 96–106 (2017).
dc.relation.references[6] Kostrobij P., Ryzha I., Markovych B. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Mathematical Modeling and Computing. 5 (2), 158–168 (2018).
dc.relation.references[7] Kuznetsov Y. A. Elements of Applied Bifurcation Theory. Springer, New York (1995).
dc.relation.references[8] Hoyle R. Pattern Formation. Cambridge University Press, New York (2006).
dc.relation.references[9] Imbihl R., Ertl G. Oscillatory kinetics in heterogeneous catalysis. Chemical Reviews. 95 (3), 697–733 (1995).
dc.relation.references[10] Gritsch T., Coulman D., Behm R. J., Ertl G. Mechanism of the CO-induced 1×2→1×1 structural transformation of Pt(110). Physical Review Letters. 63 (10), 1086–1089 (1989).
dc.relation.references[11] Slinko M. M., Jaeger N. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Vol. 86. Elsevier Science: Amsterdam (1994).
dc.relation.references[12] Qiao L., Li X., Kevrekidis I. G., Punckt C., Rotermund H. H. Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Physical Review E. 77 (3), 036214 (2008).
dc.relation.references[13] Uchiyama T., Yoshida H., Kuwauchi Y., Ichikawa S., Shimada S., Haruta M., Takeda S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angewandte Chemie International Edition. 50 (43), 10157–10160 (2011).
dc.relation.references[14] Elsgolts L. Differential Equations and the Calculus of Variation. Kniga po Trebovaniju, Moskva (2012), (in Russian).
dc.relation.references[15] Zhdanov V. P. Kinetic models of CO oxidation on gold nanoparticles. Surface Science. 630, 286–293 (2014).
dc.relation.references[16] Reichert C., Starke J., Eiswirth M. Stochastic model of CO oxidation on platinum surfaces and deterministic limit. Journal of Chemical Physics. 115 (10), 4829–4838 (2001).
dc.relation.references[17] Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Deffinitions, Theorems and Formulas for Reference and Review. Dover Publications (2000).
dc.relation.referencesen[1] Freund H.-J., Meijer G., Scheffler M., Schlogl R., Wolf M. CO oxidation as a prototypical reaction for heterogeneous processes. Angewandte Chemie International Edition. 50 (43), 10064–10094 (2011).
dc.relation.referencesen[2] Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. Journal of Chemical Physics. 9.
dc.relation.referencesen[3] Haruta M., Kobayashi T., Sano H., Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0◦C. Chemistry Letters. 16 (2), 405–408 (1987).
dc.relation.referencesen[4] Valden M., Lai X., Goodman D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 281 (5383), 1647–1650 (1998).
dc.relation.referencesen[5] Ryzha I., Matseliukh M. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Mathematical Modeling and Computing. 4 (1), 96–106 (2017).
dc.relation.referencesen[6] Kostrobij P., Ryzha I., Markovych B. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Mathematical Modeling and Computing. 5 (2), 158–168 (2018).
dc.relation.referencesen[7] Kuznetsov Y. A. Elements of Applied Bifurcation Theory. Springer, New York (1995).
dc.relation.referencesen[8] Hoyle R. Pattern Formation. Cambridge University Press, New York (2006).
dc.relation.referencesen[9] Imbihl R., Ertl G. Oscillatory kinetics in heterogeneous catalysis. Chemical Reviews. 95 (3), 697–733 (1995).
dc.relation.referencesen[10] Gritsch T., Coulman D., Behm R. J., Ertl G. Mechanism of the CO-induced 1×2→1×1 structural transformation of Pt(110). Physical Review Letters. 63 (10), 1086–1089 (1989).
dc.relation.referencesen[11] Slinko M. M., Jaeger N. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Vol. 86. Elsevier Science: Amsterdam (1994).
dc.relation.referencesen[12] Qiao L., Li X., Kevrekidis I. G., Punckt C., Rotermund H. H. Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Physical Review E. 77 (3), 036214 (2008).
dc.relation.referencesen[13] Uchiyama T., Yoshida H., Kuwauchi Y., Ichikawa S., Shimada S., Haruta M., Takeda S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation. Angewandte Chemie International Edition. 50 (43), 10157–10160 (2011).
dc.relation.referencesen[14] Elsgolts L. Differential Equations and the Calculus of Variation. Kniga po Trebovaniju, Moskva (2012), (in Russian).
dc.relation.referencesen[15] Zhdanov V. P. Kinetic models of CO oxidation on gold nanoparticles. Surface Science. 630, 286–293 (2014).
dc.relation.referencesen[16] Reichert C., Starke J., Eiswirth M. Stochastic model of CO oxidation on platinum surfaces and deterministic limit. Journal of Chemical Physics. 115 (10), 4829–4838 (2001).
dc.relation.referencesen[17] Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Deffinitions, Theorems and Formulas for Reference and Review. Dover Publications (2000).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectреакція каталітичоного окиснення
dc.subjectмоделювання оксинення СО
dc.subjectнаночастинки золота
dc.subjectreaction of catalytic oxidation
dc.subjectmodeling of CO oxidation
dc.subjectgold nanoparticles
dc.titleStability of carbon monoxide oxidation process on gold nanoparticles
dc.title.alternativeСтійкість процесу окиснення монооксиду вуглецю на наночастинках золота
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n1_Kostrobij_P_P-Stability_of_carbon_116-124.pdf
Size:
963.72 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n1_Kostrobij_P_P-Stability_of_carbon_116-124__COVER.png
Size:
410.23 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: