The development of non-doped OLED based on donor-acceptor tetrachloropyridine-carbazole material with the emission in “deep-blue” region

dc.citation.epage130
dc.citation.issue2
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage123
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівська філія ПВНЗ “Європейський університет”
dc.contributor.affiliationЧернівецький національний університет ім. Юрія Федьковича
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationEuropean University
dc.contributor.affiliationYuriy Fedkovych Chernivtsi National University
dc.contributor.authorКуцій, С.
dc.contributor.authorДанилів, Я.
dc.contributor.authorДанилів, І.
dc.contributor.authorГладун, М.
dc.contributor.authorБарило, Н.
dc.contributor.authorСтахіра, П.
dc.contributor.authorФечан, А.
dc.contributor.authorГорбулик, В.
dc.contributor.authorKutsiy, S.
dc.contributor.authorDanyliv, Y.
dc.contributor.authorDanyliv, I.
dc.contributor.authorHladun, M.
dc.contributor.authorBarylo, N.
dc.contributor.authorStakhira, P.
dc.contributor.authorFechan, A.
dc.contributor.authorGorbulik, V.
dc.date.accessioned2023-03-03T13:06:18Z
dc.date.available2023-03-03T13:06:18Z
dc.date.created2021-01-31
dc.date.issued2021-01-31
dc.description.abstractРозроблення ефективних органічних світловипромінювальних діодів (OLED) на основі явища внутрішньомолекулярної термічно активованої уповільненої флуоресценції (TADF), у конструкції яких відсутні сині фосфоресцентні емітери на основі рідкоземельних металів, все ще залишається складним завданням галузі розроблення новітніх систем освітлення та OLED дисплеїв. У статті запропоновано технологічний підхід до формування такого типу OLED, емітером у якому є органічний донорноакцепторний молекулярний матеріал 9-(2,3,5,6-тетрахлоропіридин-4-іл)-9Н-карбазол (4-CzPyCl4), у якому електронна взаємодія між донорним і акцепторним фрагментами відіграє ключову роль у механізмі уповільненої флуоресценції. У конструкції розробленої світловипромінювальної гетероструктури використано пошарове формування функціональних нанорозмірних органічних плівок, на відміну від традиційних конструкцій OLED темно-синього кольору випромінювання, в яких застосовується система гість – господар. Зовнішня квантова ефективність розробленого OLED становить 2,8 %. Максимальна яскравість 3 000 кд/м2 досягається за напруги 15 В. Координати колірності CIE(x, y) 1931 становлять (0,15; 0,13), що відповідає зоні темно-синього кольору.
dc.description.abstractThe development of efficient organic light emitting diodes (OLED) based on the phenomenon of intramolecular thermally activated delayed fluorescence (TADF), in the design of which there are no blue phosphorescent emitters based on rare earth metals, still remains a challenge in the development of new lighting systems and OLED displays. The article proposes a technological approach to the formation of new type of OLED, where the emitter is an organic donor-acceptor molecular material 9-(2,3,5,6-tetrachloropyridin-4-yl)-9H-carbazole (4-CzPyCl4), in which electronic interaction between the donor and acceptor fragment plays a key role in the mechanism of delayed fluorescence. The design of the developed light-emitting heterostructure uses layer-by-layer formation of functional nanosized organic films, in contrast to traditional OLED designs of dark blue color radiation, which uses a guest-host systemThe external quantum efficiency of the developed OLED is 2.8 %. The maximum brightness of 3,000 cd/m2 is reached at a voltage of 15 V. The chromaticity coordinates CIE (x, y) 1931 are (0.15, 0.13), which corresponds to the “dark blue” emitting spectral zone.
dc.format.extent123-130
dc.format.pages8
dc.identifier.citationThe development of non-doped OLED based on donor-acceptor tetrachloropyridine-carbazole material with the emission in “deep-blue” region / S. Kutsiy, Y. Danyliv, I. Danyliv, M. Hladun, N. Barylo, P. Stakhira, A. Fechan, V. Gorbulik // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 1. — No 2. — P. 123–130.
dc.identifier.citationenKutsiy S., Danyliv Y., Danyliv I., Hladun M., Barylo N., Stakhira P., Fechan A., Gorbulik V. (2021) The development of non-doped OLED based on donor-acceptor tetrachloropyridine-carbazole material with the emission in “deep-blue” region. Infocommunication Technologies and Electronic Engineering (Lviv), vol. 1, no 2, pp. 123-130.
dc.identifier.doihttps://doi.org/10.23939/ictee2021.02.123
dc.identifier.issn2786-4553
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57491
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 2 (1), 2021
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 2 (1), 2021
dc.relation.references[1] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer and K. Leo. Adv. Mater (2007), Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light-Emitting Diodes, (19), 3672–3676.
dc.relation.references[2] ENERGY STAR Requirements for SSL Luminaires, Version1.1, ENERGY STAR requirements for integral LED lamps,U.S. Department of Energy, (2007).
dc.relation.references[3] C. W. Han, W. Tak and B. C. Ahn J. (2007), Society information display.(19), 190–195.
dc.relation.references[4] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi (2012), Nature, Highly efficient organic light-emitting diodes from delayed fluorescence , (492), 234–238.
dc.relation.references[5] G. Schwartz, S. Reineke, K. Walzer and K. Leo. (2008) Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes Appl. Phys. Lett., (92).
dc.relation.references[6] H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz and J. Kido (2010), High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex, Adv.Mater.(22), 5003–5007.
dc.relation.references[7] Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee (2017), Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters, Chem. Mate (29), 1946–1963.
dc.relation.references[8] Y. Seino, S. Inomata, H. Sasabe, Y. Pu, J. Kido (2016), High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W-1, Adv. Mater. (28), 2638–2643.
dc.relation.references[9] Organic electronics: a textbook / G. V. Baryshnikov, D. Yu. Volyniuk, I. I. Helzhinsky [etc.]; for ed. Z. Yu. Gotri. Lviv: Lviv Polytechnic Publishing House, 2019. 292 p.
dc.relation.references[10] L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, and C. Adachi (2016), Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters, Appl. Chem. (56), 1571–1575.
dc.relation.references[11] Y. Danyliv, R. Lytvyn, D. Volyniuk, I. Hladka, J. V. Grazulevicius (2018), Derivatives of carbazole and chloropyridine exhibiting aggregation induced emission enhancement and deep-blue delayed fluorescence, Dyes and Pigments, (149), 588–596.
dc.relation.references[12] Elements and devices of organic electronics: a collective monograph / G. V. Baryshnikov, I. I. Gelzhinsky, Z. Yu. Gotra, H. B. Ivanyuk, B. P. Minaev, P. Y. Stakhira. Lviv: Space-M, 2020. 224 p.
dc.relation.references[13] Organic light-emitting structures: collective monograph / G. V. Baryshnikov, I. I. Gelzhinsky, Z. Yu. Gotra, H. B. Ivanyuk, B. P. Minaev, P. Y. Stakhira. Lviv: Lviv Polytechnic Publishing House, 2020. 236 p.
dc.relation.references[14] P. Y. Stakhira, V. V. Cherpak (2009), The properties of heterojunction based on CuI/pentacene/Al, Vacuum, 83 (8), 1129–113.
dc.relation.references[15] I. Hladka, R. Lytvyn, D. Volyniuk, D. Gudeika, J. V. Grazulevicius (2018), W-shaped bipolar derivatives of carbazole and oxadiazole with high triplet energies for electroluminescent devices, Dyes and Pigments (149), 812–821.
dc.relation.references[16] X. Tan, D. Volyniuk, T. Matulaitis, J. Keruckas, K. Ivaniuk, I. Helzhynskyy, P. Stakhira, J. V. Grazulevicius (2020), High triplet energy materials for efficient exciplex-based and full-TADF-based white OLEDs, Dyes and Pigments (177), 108259.
dc.relation.references[17] Y. Danyliv, D. Volyniuk, O. Bezvikonnyi, I. Hladka, K. Ivaniuk, I. Helzhynskyy, P. Stakhira, A. Tomkeviciene, L. Skhirtladze, J. V. Grazulevicius (2020), Through-space charge transfer in luminophore based on phenyllinked carbazole- and phthalimide moieties utilized in cyan-emitting OLEDs, Dyes and Pigments (172), 107833.
dc.relation.references[18] S. H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee , N. Chopra, F. So and J. G. Xue (2009), White phosphorescent organic light-emitting devices with dual triple-doped emissive layers, Appl. Phys. Lett. (94) 3.
dc.relation.references[19] N. Aizawa, M. Numata, C. Adachi, T. Yasuda (2017), Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence, Adv. Mater. (29), 1604856.
dc.relation.references[20] Q. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, S. Y. Lee, T. Yasuda, C. Adachi (2015), Nearly100 % Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters, Adv. Mater. (27), 2096.
dc.relation.references[21] G. Barylo, Helzhinsky I. I., Golyaka R. L., Marusenkova T. A., Khilchuk M. O. (2021), Built-in system of converter of supply voltage of organic light-emitting diodes, Bulletin of Khmelnytsky National University. No. 2 (295). pp. 151–155.
dc.relation.references[22] G. І. Barylo, R. L. Holyaka, I. І. Helzhynskyy, Z. Yu. Hotra, M. S. Ivakh, R. L. Politanskyi (2020), Modeling of organic light emitting structures, Physics and Chemistry of Solid State Open Access, Vol. 21, Is. 3, рр. 519–524, 30 September 2020. DOI:10.15330/PCSS.21.3.519-524/
dc.relation.references[23] G. Barylo, O. Boyko, I. Gelzynskyy, R. Holyaka, Z. Hotra, T. Marusenkova, M. Khilchuk, M. Michalska (2020), Hardware and software means for electronic components and sensors research, IAPGOŚ Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska. No. 10(1). pp. 66–71.
dc.relation.referencesen[1] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer and K. Leo. Adv. Mater (2007), Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light-Emitting Diodes, (19), 3672–3676.
dc.relation.referencesen[2] ENERGY STAR Requirements for SSL Luminaires, Version1.1, ENERGY STAR requirements for integral LED lamps,U.S. Department of Energy, (2007).
dc.relation.referencesen[3] C. W. Han, W. Tak and B. C. Ahn J. (2007), Society information display.(19), 190–195.
dc.relation.referencesen[4] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi (2012), Nature, Highly efficient organic light-emitting diodes from delayed fluorescence , (492), 234–238.
dc.relation.referencesen[5] G. Schwartz, S. Reineke, K. Walzer and K. Leo. (2008) Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes Appl. Phys. Lett., (92).
dc.relation.referencesen[6] H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz and J. Kido (2010), High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex, Adv.Mater.(22), 5003–5007.
dc.relation.referencesen[7] Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee (2017), Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters, Chem. Mate (29), 1946–1963.
dc.relation.referencesen[8] Y. Seino, S. Inomata, H. Sasabe, Y. Pu, J. Kido (2016), High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W-1, Adv. Mater. (28), 2638–2643.
dc.relation.referencesen[9] Organic electronics: a textbook, G. V. Baryshnikov, D. Yu. Volyniuk, I. I. Helzhinsky [etc.]; for ed. Z. Yu. Gotri. Lviv: Lviv Polytechnic Publishing House, 2019. 292 p.
dc.relation.referencesen[10] L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, and C. Adachi (2016), Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters, Appl. Chem. (56), 1571–1575.
dc.relation.referencesen[11] Y. Danyliv, R. Lytvyn, D. Volyniuk, I. Hladka, J. V. Grazulevicius (2018), Derivatives of carbazole and chloropyridine exhibiting aggregation induced emission enhancement and deep-blue delayed fluorescence, Dyes and Pigments, (149), 588–596.
dc.relation.referencesen[12] Elements and devices of organic electronics: a collective monograph, G. V. Baryshnikov, I. I. Gelzhinsky, Z. Yu. Gotra, H. B. Ivanyuk, B. P. Minaev, P. Y. Stakhira. Lviv: Space-M, 2020. 224 p.
dc.relation.referencesen[13] Organic light-emitting structures: collective monograph, G. V. Baryshnikov, I. I. Gelzhinsky, Z. Yu. Gotra, H. B. Ivanyuk, B. P. Minaev, P. Y. Stakhira. Lviv: Lviv Polytechnic Publishing House, 2020. 236 p.
dc.relation.referencesen[14] P. Y. Stakhira, V. V. Cherpak (2009), The properties of heterojunction based on CuI/pentacene/Al, Vacuum, 83 (8), 1129–113.
dc.relation.referencesen[15] I. Hladka, R. Lytvyn, D. Volyniuk, D. Gudeika, J. V. Grazulevicius (2018), W-shaped bipolar derivatives of carbazole and oxadiazole with high triplet energies for electroluminescent devices, Dyes and Pigments (149), 812–821.
dc.relation.referencesen[16] X. Tan, D. Volyniuk, T. Matulaitis, J. Keruckas, K. Ivaniuk, I. Helzhynskyy, P. Stakhira, J. V. Grazulevicius (2020), High triplet energy materials for efficient exciplex-based and full-TADF-based white OLEDs, Dyes and Pigments (177), 108259.
dc.relation.referencesen[17] Y. Danyliv, D. Volyniuk, O. Bezvikonnyi, I. Hladka, K. Ivaniuk, I. Helzhynskyy, P. Stakhira, A. Tomkeviciene, L. Skhirtladze, J. V. Grazulevicius (2020), Through-space charge transfer in luminophore based on phenyllinked carbazole- and phthalimide moieties utilized in cyan-emitting OLEDs, Dyes and Pigments (172), 107833.
dc.relation.referencesen[18] S. H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee , N. Chopra, F. So and J. G. Xue (2009), White phosphorescent organic light-emitting devices with dual triple-doped emissive layers, Appl. Phys. Lett. (94) 3.
dc.relation.referencesen[19] N. Aizawa, M. Numata, C. Adachi, T. Yasuda (2017), Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence, Adv. Mater. (29), 1604856.
dc.relation.referencesen[20] Q. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, S. Y. Lee, T. Yasuda, C. Adachi (2015), Nearly100 % Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters, Adv. Mater. (27), 2096.
dc.relation.referencesen[21] G. Barylo, Helzhinsky I. I., Golyaka R. L., Marusenkova T. A., Khilchuk M. O. (2021), Built-in system of converter of supply voltage of organic light-emitting diodes, Bulletin of Khmelnytsky National University. No. 2 (295). pp. 151–155.
dc.relation.referencesen[22] G. I. Barylo, R. L. Holyaka, I. I. Helzhynskyy, Z. Yu. Hotra, M. S. Ivakh, R. L. Politanskyi (2020), Modeling of organic light emitting structures, Physics and Chemistry of Solid State Open Access, Vol. 21, Is. 3, rr. 519–524, 30 September 2020. DOI:10.15330/PCSS.21.3.519-524/
dc.relation.referencesen[23] G. Barylo, O. Boyko, I. Gelzynskyy, R. Holyaka, Z. Hotra, T. Marusenkova, M. Khilchuk, M. Michalska (2020), Hardware and software means for electronic components and sensors research, IAPGOŚ Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska. No. 10(1). pp. 66–71.
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.subjectOLED
dc.subjectуповільнена флуоресценція
dc.subjectекситон
dc.subjectелектролюмінесценція
dc.subjectтриплетні стани
dc.subjectзовнішня квантова ефективність
dc.subjectOLED
dc.subjectdelayed fluorescence
dc.subjectexciton
dc.subjectelectroluminescence
dc.subjecttriplet states
dc.subjectexternal
dc.titleThe development of non-doped OLED based on donor-acceptor tetrachloropyridine-carbazole material with the emission in “deep-blue” region
dc.title.alternativeРозроблення недопованої органічної світловипромінювальної структури із емісією у темно-синьому діапазоні на основі донорно-акцепторного матеріалу карбазолотетрахлоропіридину
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v1n2_Kutsiy_S-The_development_of_non_doped_123-130.pdf
Size:
575.16 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.95 KB
Format:
Plain Text
Description: