Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite

dc.citation.epage235
dc.citation.issue2
dc.citation.spage231
dc.contributor.affiliationShahid Bahonar University of Kerman
dc.contributor.affiliationInternational Center of High Technology & Environmental Science
dc.contributor.authorRavari, Maryam Hamidi
dc.contributor.authorSarrafi, Amir
dc.contributor.authorTahmooresi, Majid
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T12:28:07Z
dc.date.available2020-03-02T12:28:07Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractЗ використанням зразка бентоніту одер- жано суміші глин, зшитих алюмінієм та міддю (Al, Cu-PILCs) з різним відсотком Cu та імпрегнованих алюмінієм (Cu@Al- PILC). Характеристику зразків проведено за допомогою рентгенівської дифракції, адсорбції-десорбції N2 та Фур‘є- спектроскопії. Визначено, що площа поверхні за БЕТ, загальна площа та об‘єм мікропор Al-PILC зменшуються в Cu@Al- PILC, проте збільшуються у випадку змішаних металів і досягають максимуму для Al, Cu-PILCs. Встановлено, що найвищий вміст міді є в Cu@Al-PILC, тому його каталітичні властивості покращуються. Фур‘є-спектроскопією підтверд- жено введення міді в структуру Al, Cu-PILCs.
dc.description.abstractIn this paper, mixed aluminum and copper pillared clays (Al,Cu-PILCs) with different percentage of Cu and copper impregnated aluminum pillared clay (Cu@Al-PILC) were prepared using a bentonite sample. The samples were characterized by X-ray diffraction, N2 adsorption-desorption and Fourier transformed infrared spectroscopy. The results showed bentonite had a main reflection of montmorillonite that characterized by basal spacing, increased by pillaring. The specific BET surface area, total surface area and micropore volume of Al-PILC decreased in Cu@Al-PILC but increased in the case of mixed metal pillars and the maximum of these parameters related to Al,Cu15-PILC. Maximum weight percentage of copper was in Cu@Al-PILC therefore it contained higher percent of copper and its catalytic properties increased. FTIR result of samples confirmed the successful intercalation of Cu.
dc.format.extent231-235
dc.format.pages5
dc.identifier.citationRavari M. H. Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite / Maryam Hamidi Ravari, Amir Sarrafi, Majid Tahmooresi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 231–235.
dc.identifier.citationenRavari M. H. Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite / Maryam Hamidi Ravari, Amir Sarrafi, Majid Tahmooresi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 231–235.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46461
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (13), 2019
dc.relation.references1. Bergaya F., Theng B., Lagaly G.: Handbook of Clay Science. Elsevier 2006.
dc.relation.references2. Ayodele O., Lim J., Hameed B.: Appl. Catal. A-Gen., 2012, 413, 301. https://doi.org/10.1016/j.apcata.2011.11.023
dc.relation.references3. Britto J., Oliveira S., Rabelo D., Rangel M.: Catal. Today, 2008, 133, 582. https://doi.org/10.1016/j.cattod.2007.12.112
dc.relation.references4. Zuo S., Zhou R., Qi Ch.: J. Rare Earths, 2011, 29, 52. https://doi.org/10.1016/S1002-0721(10)60393-6
dc.relation.references5. Kloprogge J., Evans R., Hickey L., Frost L.: Appl. Clay Sci., 2002, 20, 157. https://doi.org/10.1016/S0169-1317(01)00069-2
dc.relation.references6. Mishra T.: TransitionMetal Oxide-Pillared Clay Catalyst: Synthesis to Application [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010.
dc.relation.references7. Mojovic Z., Bankovic P., Milutinovic-Nikolis A. et al.: Chem. Eng. J., 2009, 154, 149. https://doi.org/10.1016/j.cej.2009.05.004
dc.relation.references8. Pires J., PintoM.: Pillared Interlayered Clays as Adsorbents of Gases and [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010.
dc.relation.references9. Chae H., Nam I., Ham S., Hong S.: Catal. Today, 2001, 68, 31. https://doi.org/10.1016/S0920-5861(01)00320-0
dc.relation.references10. Alejandro Galeano L., Angel VicenteM., Gil A.: Catal. Rev., 2014, 56, 239. https://doi.org/10.1080/01614940.2014.904182
dc.relation.references11. Turgut Basoglu F., Balci S.: Appl. Clay Sci., 2010, 50, 73. https://doi.org/10.1016/j.clay.2010.07.004
dc.relation.references12. Turgut Basoglu F., Balci S.: J. Mol. Struct., 2016, 1106, 382. https://doi.org/10.1016/j.molstruc.2015.10.072
dc.relation.references13. Bankovic P., Mojovic Z., Milutinovic-Nikolis A. et al.: Appl. Clay Sci., 2010, 49, 84. https://doi.org/10.1016/j.clay.2010.04.012
dc.relation.references14. Hadjltaief H., ZinaM., GalvesM., Costa P.: Comptes Rendus Chimie, 2015, 18, 1161. https://doi.org/10.1016/j.crci.2015.08.004
dc.relation.references15. Abeysinghe S.: Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications. MS thesis, University of Iowa, 2012.
dc.relation.references16. Giordano G., Perathoner S., Centi G. et al.: Catal. Today, 2007, 124, 240. https://doi.org/10.1016/j.cattod.2007.03.041
dc.relation.references17. Yang R., Tharappiwattananon N., Long R.: Appl. Catal. BEnviron., 1998, 19, 289. https://doi.org/10.1016/S0926-3373(98)00083-6
dc.relation.references18. Caudo S., Genovese Ch., Perathoner S., Centi G.:Micropor. Mesopor. Mater., 2008, 107, 46. https://doi.org/10.1016/j.micromeso.2007.05.011
dc.relation.references19. Windle C., Perutz R.: Adv. Chem. Rev., 2012, 256, 2562. https://doi.org/10.1016/j.ccr.2012.03.010
dc.relation.references20. Lowell S., Shields J., ThomasM., ThommesM.:Micropore Analysis. [in:] Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht 2004, 129-156. https://doi.org/10.1007/978-1-4020-2303-3_9
dc.relation.references21. Jasinska I.: Particle size pore structure of nanomaterial. PhD thesis, West Pomeranian University of Technology 2011.
dc.relation.references22. Lippens B., Deboer J.: J. Catal., 1995, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6
dc.relation.references23. Ayodele O., Hameed B.: J. Ind. Eng. Chem., 2013, 19, 966. https://doi.org/10.1016/j.jiec.2012.11.018
dc.relation.references24. Djomgoue P., NjopwouoD.: J. Surf. Eng. Mat. Adv. Technol., 2013, 3, 275. https://doi.org/10.4236/jsemat.2013.34037
dc.relation.references25. Tomul F., Balci S.: J. Sci., 2007, 21, 21.
dc.relation.references26. Regnier P., Lasaga A.C., Berner R. et al.: Am. Mineralogist, 1994, 79, 809.
dc.relation.references27. HariharanM., Varghese N., Benny Cherian A. et al.: Int. J. Sci. Res. Publ., 2014, 4(10), 1.
dc.relation.referencesen1. Bergaya F., Theng B., Lagaly G., Handbook of Clay Science. Elsevier 2006.
dc.relation.referencesen2. Ayodele O., Lim J., Hameed B., Appl. Catal. A-Gen., 2012, 413, 301. https://doi.org/10.1016/j.apcata.2011.11.023
dc.relation.referencesen3. Britto J., Oliveira S., Rabelo D., Rangel M., Catal. Today, 2008, 133, 582. https://doi.org/10.1016/j.cattod.2007.12.112
dc.relation.referencesen4. Zuo S., Zhou R., Qi Ch., J. Rare Earths, 2011, 29, 52. https://doi.org/10.1016/S1002-0721(10)60393-6
dc.relation.referencesen5. Kloprogge J., Evans R., Hickey L., Frost L., Appl. Clay Sci., 2002, 20, 157. https://doi.org/10.1016/S0169-1317(01)00069-2
dc.relation.referencesen6. Mishra T., TransitionMetal Oxide-Pillared Clay Catalyst: Synthesis to Application [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010.
dc.relation.referencesen7. Mojovic Z., Bankovic P., Milutinovic-Nikolis A. et al., Chem. Eng. J., 2009, 154, 149. https://doi.org/10.1016/j.cej.2009.05.004
dc.relation.referencesen8. Pires J., PintoM., Pillared Interlayered Clays as Adsorbents of Gases and [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010.
dc.relation.referencesen9. Chae H., Nam I., Ham S., Hong S., Catal. Today, 2001, 68, 31. https://doi.org/10.1016/S0920-5861(01)00320-0
dc.relation.referencesen10. Alejandro Galeano L., Angel VicenteM., Gil A., Catal. Rev., 2014, 56, 239. https://doi.org/10.1080/01614940.2014.904182
dc.relation.referencesen11. Turgut Basoglu F., Balci S., Appl. Clay Sci., 2010, 50, 73. https://doi.org/10.1016/j.clay.2010.07.004
dc.relation.referencesen12. Turgut Basoglu F., Balci S., J. Mol. Struct., 2016, 1106, 382. https://doi.org/10.1016/j.molstruc.2015.10.072
dc.relation.referencesen13. Bankovic P., Mojovic Z., Milutinovic-Nikolis A. et al., Appl. Clay Sci., 2010, 49, 84. https://doi.org/10.1016/j.clay.2010.04.012
dc.relation.referencesen14. Hadjltaief H., ZinaM., GalvesM., Costa P., Comptes Rendus Chimie, 2015, 18, 1161. https://doi.org/10.1016/j.crci.2015.08.004
dc.relation.referencesen15. Abeysinghe S., Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications. MS thesis, University of Iowa, 2012.
dc.relation.referencesen16. Giordano G., Perathoner S., Centi G. et al., Catal. Today, 2007, 124, 240. https://doi.org/10.1016/j.cattod.2007.03.041
dc.relation.referencesen17. Yang R., Tharappiwattananon N., Long R., Appl. Catal. BEnviron., 1998, 19, 289. https://doi.org/10.1016/S0926-3373(98)00083-6
dc.relation.referencesen18. Caudo S., Genovese Ch., Perathoner S., Centi G.:Micropor. Mesopor. Mater., 2008, 107, 46. https://doi.org/10.1016/j.micromeso.2007.05.011
dc.relation.referencesen19. Windle C., Perutz R., Adv. Chem. Rev., 2012, 256, 2562. https://doi.org/10.1016/j.ccr.2012.03.010
dc.relation.referencesen20. Lowell S., Shields J., ThomasM., ThommesM.:Micropore Analysis. [in:] Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht 2004, 129-156. https://doi.org/10.1007/978-1-4020-2303-3_9
dc.relation.referencesen21. Jasinska I., Particle size pore structure of nanomaterial. PhD thesis, West Pomeranian University of Technology 2011.
dc.relation.referencesen22. Lippens B., Deboer J., J. Catal., 1995, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6
dc.relation.referencesen23. Ayodele O., Hameed B., J. Ind. Eng. Chem., 2013, 19, 966. https://doi.org/10.1016/j.jiec.2012.11.018
dc.relation.referencesen24. Djomgoue P., NjopwouoD., J. Surf. Eng. Mat. Adv. Technol., 2013, 3, 275. https://doi.org/10.4236/jsemat.2013.34037
dc.relation.referencesen25. Tomul F., Balci S., J. Sci., 2007, 21, 21.
dc.relation.referencesen26. Regnier P., Lasaga A.C., Berner R. et al., Am. Mineralogist, 1994, 79, 809.
dc.relation.referencesen27. HariharanM., Varghese N., Benny Cherian A. et al., Int. J. Sci. Res. Publ., 2014, 4(10), 1.
dc.relation.urihttps://doi.org/10.1016/j.apcata.2011.11.023
dc.relation.urihttps://doi.org/10.1016/j.cattod.2007.12.112
dc.relation.urihttps://doi.org/10.1016/S1002-0721(10)60393-6
dc.relation.urihttps://doi.org/10.1016/S0169-1317(01)00069-2
dc.relation.urihttps://doi.org/10.1016/j.cej.2009.05.004
dc.relation.urihttps://doi.org/10.1016/S0920-5861(01)00320-0
dc.relation.urihttps://doi.org/10.1080/01614940.2014.904182
dc.relation.urihttps://doi.org/10.1016/j.clay.2010.07.004
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2015.10.072
dc.relation.urihttps://doi.org/10.1016/j.clay.2010.04.012
dc.relation.urihttps://doi.org/10.1016/j.crci.2015.08.004
dc.relation.urihttps://doi.org/10.1016/j.cattod.2007.03.041
dc.relation.urihttps://doi.org/10.1016/S0926-3373(98)00083-6
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2007.05.011
dc.relation.urihttps://doi.org/10.1016/j.ccr.2012.03.010
dc.relation.urihttps://doi.org/10.1007/978-1-4020-2303-3_9
dc.relation.urihttps://doi.org/10.1016/0021-9517(65)90307-6
dc.relation.urihttps://doi.org/10.1016/j.jiec.2012.11.018
dc.relation.urihttps://doi.org/10.4236/jsemat.2013.34037
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Hamidi RavariM., Sarrafi A., Tahmooresi M., 2019
dc.subjectалюміній
dc.subjectбентоніт
dc.subjectмідь
dc.subjectзшиті глини
dc.subjectaluminum
dc.subjectbentonite
dc.subjectcopper
dc.subjectpillared clays
dc.titleSynthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite
dc.title.alternativeСинтез та характеристика суміші Al,Cu-зшитого і промотованого міддю бентоніту
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v13n2_Ravari_M_H-Synthesis_and_Characterization_231-235.pdf
Size:
282.7 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v13n2_Ravari_M_H-Synthesis_and_Characterization_231-235__COVER.png
Size:
533.38 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.97 KB
Format:
Plain Text
Description: