The sulfonation of 3,5,7,3',4'-pentahydroxyflavone and non-linear-optical activity of its sulfonic derivatives

dc.citation.epage37
dc.citation.issue1
dc.citation.spage33
dc.contributor.affiliationNational Technical University "Kharkiv Polytechnic Institute"
dc.contributor.authorMishurov, Dmytro
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T10:50:17Z
dc.date.available2020-03-02T10:50:17Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractПроведено синтез сульфокверцетину та вивчення його структури й нелінійно оптичних властивостей. Із використанням квантово-хімічних розрахунків, 13С і HSQC ЯМР спектроскопії, ІЧ спектроскопії було показано, що сульфонова група в знаходиться у положенні C8 кверцетину. Визначено молекулярну гіперполяризованість отриманого сульфокверцетину. Показано що сульфокверцетин можливо використовувати для створення на його основі нових полі- мерних НЛО матеріалів.
dc.description.abstractSynthesis of sulfoquercetin and studies of its structure and nonlinear properties have been carried out. Using quantum-chemical simulations, 13С and HSQC NMR spectrometry, FTIR spectroscopy it was shown that a sulphonic group occurs in C8 location of quercetin. Molecular first hyperpolarizability of the obtained 8-sulfoquercetin was studied. It was shown that 8-sulfoquercetin can be used for creation the new polymer NLO materials on its basis.
dc.format.extent33-37
dc.format.pages5
dc.identifier.citationMishurov D. The sulfonation of 3,5,7,3',4'-pentahydroxyflavone and non-linear-optical activity of its sulfonic derivatives / Dmytro Mishurov // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 33–37.
dc.identifier.citationenMishurov D. The sulfonation of 3,5,7,3',4'-pentahydroxyflavone and non-linear-optical activity of its sulfonic derivatives / Dmytro Mishurov // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 33–37.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46428
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019
dc.relation.references1. Liu J., Xu G., Liu F. et al.: RSC Adv., 2015, 5, 15784. https://doi.org/10.1039/C4RA13250E
dc.relation.references2. Mishurov D., Roshal A., Brovko O.: Polym. Polym. Composites, 2015, 23, 121.
dc.relation.references3. OhM.-C., Kim K.-J., Chu W.-S. et al.: Polymers, 2011, 3, 975. https://doi.org/10.3390/polym3030975
dc.relation.references4. Shevchenko V., Sidorenko А., Bliznyuk V. et al.: Polym. Sci. Ser. A, 2013, 55, 1. https://doi.org/10.1134/S0965545X12100045
dc.relation.references5. Greulich T., Suzuki N., Daniliuc C.: Chem. Commun., 2016, 11, 1. https://doi.org/10.1039/C5CC03063C
dc.relation.references6. Williams D.: Angew. Chem. Int. Ed. Engl., 1984, 23, 690. https://doi.org/10.1002/anie.198406901
dc.relation.references7. Cheng L.-T., TamW., Stevenson S. et al.: J. Phys. Chem., 1991, 95, 10631. https://doi.org/10.1021/j100179a026
dc.relation.references8. Ulman A., Willand C., Kohler W. et al.: J. Am. Chem. Soc., 1990, 112, 7083. https://doi.org/10.1021/ja00176a001
dc.relation.references9. Rikken G., Seppen C., Nijhuis S., Meijer E.: Appl. Phys. Lett., 1991, 58, 435. https://doi.org/10.1063/1.104625
dc.relation.references10. Burland D., Miller R., Reiser O. et al.: J. Appl. Phys., 1992, 71, 410. https://doi.org/10.1063/1.350724
dc.relation.references11. Stiegman A., Graham E., Perry K. et al.: J. Am. Chem. Soc., 1991, 113, 7658. https://doi.org/10.1021/ja00020a030
dc.relation.references12. Labanowski J., Andzelm J. (Eds.): Density Functional Methods in Chemistry. Springer-Verlag, New York 1991.
dc.relation.references13. Zhao Y., Truhlar D.: Theor. Chem. Account, 2008, 119, 525. https://dx.doi.org/10.1007/s00214-007-0401-8
dc.relation.references14. Francl M., PietroW., Hehre W. et al.: J. Chem. Phys., 1982, 77, 3654. https://doi.org/10.1063/1.444267
dc.relation.references15. Hariharan P., Pople J.: Theor. Chim. Acta, 1973, 28, 213. https://doi.org/10.1007/BF00533485
dc.relation.references16. FrischM., Trucks G., Schlegel H. et al.: Gaussian 09, revision C.02; Gaussian, Inc.:Wallingford, CT. 2004
dc.relation.references17. Tomasi J., PersicoM.: Chem. Rev., 1994, 94, 2027. https://doi.org/10.1021/cr00031a013
dc.relation.references18. Barone V., Cossi M., Mennucci B., Tomasi J.: J. Chem. Phys., 1997, 107, 3210. https://doi.org/10.1063/1.474671
dc.relation.references19. Mishurov D., Roshal A., Brovko O.: Funct. Mater., 2017, 24, 68. https://doi.org/10.15407/fm 24.01.068
dc.relation.references20. Heneczkowski M., KopaczM., Nowak D., Kuźniar A.: Acta Polonise Pharmacuttica-Drug Resarch, 2001, 58, 415.
dc.relation.referencesen1. Liu J., Xu G., Liu F. et al., RSC Adv., 2015, 5, 15784. https://doi.org/10.1039/P.4RA13250E
dc.relation.referencesen2. Mishurov D., Roshal A., Brovko O., Polym. Polym. Composites, 2015, 23, 121.
dc.relation.referencesen3. OhM.-C., Kim K.-J., Chu W.-S. et al., Polymers, 2011, 3, 975. https://doi.org/10.3390/polym3030975
dc.relation.referencesen4. Shevchenko V., Sidorenko A., Bliznyuk V. et al., Polym. Sci. Ser. A, 2013, 55, 1. https://doi.org/10.1134/S0965545X12100045
dc.relation.referencesen5. Greulich T., Suzuki N., Daniliuc C., Chem. Commun., 2016, 11, 1. https://doi.org/10.1039/P.5CC03063C
dc.relation.referencesen6. Williams D., Angew. Chem. Int. Ed. Engl., 1984, 23, 690. https://doi.org/10.1002/anie.198406901
dc.relation.referencesen7. Cheng L.-T., TamW., Stevenson S. et al., J. Phys. Chem., 1991, 95, 10631. https://doi.org/10.1021/j100179a026
dc.relation.referencesen8. Ulman A., Willand C., Kohler W. et al., J. Am. Chem. Soc., 1990, 112, 7083. https://doi.org/10.1021/ja00176a001
dc.relation.referencesen9. Rikken G., Seppen C., Nijhuis S., Meijer E., Appl. Phys. Lett., 1991, 58, 435. https://doi.org/10.1063/1.104625
dc.relation.referencesen10. Burland D., Miller R., Reiser O. et al., J. Appl. Phys., 1992, 71, 410. https://doi.org/10.1063/1.350724
dc.relation.referencesen11. Stiegman A., Graham E., Perry K. et al., J. Am. Chem. Soc., 1991, 113, 7658. https://doi.org/10.1021/ja00020a030
dc.relation.referencesen12. Labanowski J., Andzelm J. (Eds.): Density Functional Methods in Chemistry. Springer-Verlag, New York 1991.
dc.relation.referencesen13. Zhao Y., Truhlar D., Theor. Chem. Account, 2008, 119, 525. https://dx.doi.org/10.1007/s00214-007-0401-8
dc.relation.referencesen14. Francl M., PietroW., Hehre W. et al., J. Chem. Phys., 1982, 77, 3654. https://doi.org/10.1063/1.444267
dc.relation.referencesen15. Hariharan P., Pople J., Theor. Chim. Acta, 1973, 28, 213. https://doi.org/10.1007/BF00533485
dc.relation.referencesen16. FrischM., Trucks G., Schlegel H. et al., Gaussian 09, revision P.02; Gaussian, Inc.:Wallingford, CT. 2004
dc.relation.referencesen17. Tomasi J., PersicoM., Chem. Rev., 1994, 94, 2027. https://doi.org/10.1021/cr00031a013
dc.relation.referencesen18. Barone V., Cossi M., Mennucci B., Tomasi J., J. Chem. Phys., 1997, 107, 3210. https://doi.org/10.1063/1.474671
dc.relation.referencesen19. Mishurov D., Roshal A., Brovko O., Funct. Mater., 2017, 24, 68. https://doi.org/10.15407/fm 24.01.068
dc.relation.referencesen20. Heneczkowski M., KopaczM., Nowak D., Kuźniar A., Acta Polonise Pharmacuttica-Drug Resarch, 2001, 58, 415.
dc.relation.urihttps://doi.org/10.1039/C4RA13250E
dc.relation.urihttps://doi.org/10.3390/polym3030975
dc.relation.urihttps://doi.org/10.1134/S0965545X12100045
dc.relation.urihttps://doi.org/10.1039/C5CC03063C
dc.relation.urihttps://doi.org/10.1002/anie.198406901
dc.relation.urihttps://doi.org/10.1021/j100179a026
dc.relation.urihttps://doi.org/10.1021/ja00176a001
dc.relation.urihttps://doi.org/10.1063/1.104625
dc.relation.urihttps://doi.org/10.1063/1.350724
dc.relation.urihttps://doi.org/10.1021/ja00020a030
dc.relation.urihttps://dx.doi.org/10.1007/s00214-007-0401-8
dc.relation.urihttps://doi.org/10.1063/1.444267
dc.relation.urihttps://doi.org/10.1007/BF00533485
dc.relation.urihttps://doi.org/10.1021/cr00031a013
dc.relation.urihttps://doi.org/10.1063/1.474671
dc.relation.urihttps://doi.org/10.15407/fm
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Mishurov D., 2019
dc.subjectкверцетин
dc.subjectсульфування
dc.subjectнелінійно-оптична активність
dc.subjectполяризовність
dc.subjectвластивості
dc.subjectquercetin
dc.subjectsulfonation
dc.subjectnonlinear activity
dc.subjectpolarizability
dc.subjectproperty
dc.titleThe sulfonation of 3,5,7,3',4'-pentahydroxyflavone and non-linear-optical activity of its sulfonic derivatives
dc.title.alternativeСульфування 3,5,7,3',4'-пентагідроксифлавону та нелінійно оптичні властивості його сульфопохідних
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n1_Mishurov_D-The_sulfonation_of_3_5_7_33-37.pdf
Size:
326.19 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n1_Mishurov_D-The_sulfonation_of_3_5_7_33-37__COVER.png
Size:
483.04 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.94 KB
Format:
Plain Text
Description: