Forced convection of laminar gaseous slip flow near a stagnation point with viscous dissipation and pressure work

dc.citation.epage664
dc.citation.issue4
dc.citation.spage658
dc.contributor.affiliationУніверситет Хасана II Касабланки
dc.contributor.affiliationУніверситет Ібн Зора
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.affiliationIbn Zohr University
dc.contributor.authorЕссагір, Е.
dc.contributor.authorХаддоут, Ю.
dc.contributor.authorЗайдан, М.
dc.contributor.authorУбарра, А.
dc.contributor.authorЛагжомрі, Дж.
dc.contributor.authorEssaghir, E.
dc.contributor.authorHaddout, Y.
dc.contributor.authorZaydan, M.
dc.contributor.authorOubarra, A.
dc.contributor.authorLahjomri, J.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-11-01T07:49:52Z
dc.date.available2023-11-01T07:49:52Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractДосліджено проблему вимушеної конвекції ламінарного квазінестисливого граничного шару для потоку зі застійним ковзанням за відносно низького числа Маха, враховуючи одночасно ефекти в’язкої дисипації та роботи тиску. Система зв’язаних диференціальних рівнянь у частинних похідних спочатку була перетворена в систему зв’язаних звичайних диференціальних рівнянь за допомогою відповідних перетворень, яка потім була розв’язана за допомогою методу Рунге–Кутта–Фельберга четвертого-п’ятого порядку. Отриманий тут розв’язок набагато краще підходить для формулювання та опису непостійних властивостей хімічно реагуючих потоків, що виникають на практиці, з урахуванням граничних умов ковзання на межі поділу “газ–стінка”. Вплив числа Екерта та параметра ковзання на характеристики теплопередачі представлені графічно та обговорені. Чисельні результати показують, що робота тиску та в’язке розсіювання відіграють значну роль у теплопередачі і за будь-яких обставин не можна ними нехтувати для потоків розрідженого газу.
dc.description.abstractForced convection problem of laminar quasi-incompressible boundary layer for the stagnation slip flow at a relatively low Mach number, considering the simultaneous effects of viscous dissipation and pressure work, has been investigated. The system of coupled partial differential equations was first transformed into a system of coupled ordinary differential equations through suitable transformations, which was then solved using Runge–Kutta– Fehlberg fourth-fifth order method. The solution obtained here is much better suited to formulating and solving the variable-property of chemically reacting flows that occur in practice, by taking into account the slip boundary conditions at the gas–wall interface. The effects of the Eckert number and the slip parameter on the heat transfer characteristics are presented graphically and discussed. The numerical results show that the pressure work, viscous dissipation play significant role on the heat transfer and could not be neglected under any circumstance for rarefied gas flows.
dc.format.extent658-664
dc.format.pages7
dc.identifier.citationForced convection of laminar gaseous slip flow near a stagnation point with viscous dissipation and pressure work / E. Essaghir, Y. Haddout, M. Zaydan, A. Oubarra, J. Lahjomri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 658–664.
dc.identifier.citationenForced convection of laminar gaseous slip flow near a stagnation point with viscous dissipation and pressure work / E. Essaghir, Y. Haddout, M. Zaydan, A. Oubarra, J. Lahjomri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 658–664.
dc.identifier.doi10.23939/mmc2021.04.658
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60455
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 4 (8), 2021
dc.relation.references[1] Park J. H., Sudarshan T. S. (Eds.). Chemical vapor deposition (Vol. 2). ASM international (2001).
dc.relation.references[2] Acikalin T., Garimella S. V. Analysis and prediction of the thermal performance of piezoelectrically actuated fans. Heat transfer engineering. 30 (6), 487–498 (2009).
dc.relation.references[3] Ju Y., Maruta K. Microscale combustion: technology development and fundamental research. Progress in energy and combustion science. 37 (6), 669–715 (2011).
dc.relation.references[4] Hua J., Wu M., Kumar K. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers. Part I: Fundamental study. Chemical engineering science. 60 (13), 3497–3506 (2005).
dc.relation.references[5] Buffi M., Cappelletti A., Rizzo A. M., Martellia F., Chiaramonti D. Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass and Bioenergy. 115, 174–185 (2018).
dc.relation.references[6] Lin T. C., Schaaf S. A. Effect of Slip on Flow Near a Stagnation Point and in a Boundary Layer. NACA 1951; TN: 2568.
dc.relation.references[7] Kogan M. N. Rarefied Gas Dynamics. Plenum, New York (1969).
dc.relation.references[8] Wang C. Y. Stagnation Flows with Slip: Exact Solutions of the Navier–Stokes Equations. Zeitschrift f¨ur Angewandte Mathematik und Physik. 54 (1), 184–189 (2003).
dc.relation.references[9] Wang C. Y. Stagnation Slip Flow and Heat Transfer on a Moving Plate. Chemical Engineering Science. 61 (23), 7668–7672 (2006).
dc.relation.references[10] Wang C. Y. Similarity stagnation point solutions of the Navier–Stokes equations - Review and extension. Eur. J. Mech. B/Fluids. 27 (6), 678–683 (2008).
dc.relation.references[11] Cao K., Baker J. Slip Effects on Mixed Convective Flow and Heat Transfer From a Vertical Plate. International Journal of Heat and Mass Transfer. 52 (15–16), 3829–3841 (2009).
dc.relation.references[12] Sparrow E. M., Quack H., Boerner C. J. Local non similarity boundary layer solutions. American Institute of Aeronautics and Astronautics Journal. 8 (11), 1936–1942 (1970).
dc.relation.references[13] Sparrow E. M., Yu H. S. Local non similarity thermal boundary layer solutions. ASME Journal of Heat Transfer. 93 (4), 328–334 (1971).
dc.relation.references[14] Martin M. J., Boyd I. D. Stagnation-point heat transfer near the continuum limit. AIAA Journal. 47 (1), 283–285 (2009).
dc.relation.references[15] Essaghir E., Oubarra A., Lahjomri J. Non-similar solutions of the boundary layers equations with favorable and adverse pressure gradients, isothermal wall and slip boundary conditions: Application to Falkner–Skan gaseous flow. European Journal of Mechanics-B/Fluids. 77, 281–298 (2019).
dc.relation.references[16] Essaghir E., Haddout Y., Oubarra A., Lahjomri J. Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: linear stability analysis for local similar solution. Meccanica. 51 (1), 99–115 (2016).
dc.relation.references[17] Batchelor G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000).
dc.relation.references[18] Karniadakis G., Beskok A., Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York (2005).
dc.relation.referencesen[1] Park J. H., Sudarshan T. S. (Eds.). Chemical vapor deposition (Vol. 2). ASM international (2001).
dc.relation.referencesen[2] Acikalin T., Garimella S. V. Analysis and prediction of the thermal performance of piezoelectrically actuated fans. Heat transfer engineering. 30 (6), 487–498 (2009).
dc.relation.referencesen[3] Ju Y., Maruta K. Microscale combustion: technology development and fundamental research. Progress in energy and combustion science. 37 (6), 669–715 (2011).
dc.relation.referencesen[4] Hua J., Wu M., Kumar K. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers. Part I: Fundamental study. Chemical engineering science. 60 (13), 3497–3506 (2005).
dc.relation.referencesen[5] Buffi M., Cappelletti A., Rizzo A. M., Martellia F., Chiaramonti D. Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass and Bioenergy. 115, 174–185 (2018).
dc.relation.referencesen[6] Lin T. C., Schaaf S. A. Effect of Slip on Flow Near a Stagnation Point and in a Boundary Layer. NACA 1951; TN: 2568.
dc.relation.referencesen[7] Kogan M. N. Rarefied Gas Dynamics. Plenum, New York (1969).
dc.relation.referencesen[8] Wang C. Y. Stagnation Flows with Slip: Exact Solutions of the Navier–Stokes Equations. Zeitschrift f¨ur Angewandte Mathematik und Physik. 54 (1), 184–189 (2003).
dc.relation.referencesen[9] Wang C. Y. Stagnation Slip Flow and Heat Transfer on a Moving Plate. Chemical Engineering Science. 61 (23), 7668–7672 (2006).
dc.relation.referencesen[10] Wang C. Y. Similarity stagnation point solutions of the Navier–Stokes equations - Review and extension. Eur. J. Mech. B/Fluids. 27 (6), 678–683 (2008).
dc.relation.referencesen[11] Cao K., Baker J. Slip Effects on Mixed Convective Flow and Heat Transfer From a Vertical Plate. International Journal of Heat and Mass Transfer. 52 (15–16), 3829–3841 (2009).
dc.relation.referencesen[12] Sparrow E. M., Quack H., Boerner C. J. Local non similarity boundary layer solutions. American Institute of Aeronautics and Astronautics Journal. 8 (11), 1936–1942 (1970).
dc.relation.referencesen[13] Sparrow E. M., Yu H. S. Local non similarity thermal boundary layer solutions. ASME Journal of Heat Transfer. 93 (4), 328–334 (1971).
dc.relation.referencesen[14] Martin M. J., Boyd I. D. Stagnation-point heat transfer near the continuum limit. AIAA Journal. 47 (1), 283–285 (2009).
dc.relation.referencesen[15] Essaghir E., Oubarra A., Lahjomri J. Non-similar solutions of the boundary layers equations with favorable and adverse pressure gradients, isothermal wall and slip boundary conditions: Application to Falkner–Skan gaseous flow. European Journal of Mechanics-B/Fluids. 77, 281–298 (2019).
dc.relation.referencesen[16] Essaghir E., Haddout Y., Oubarra A., Lahjomri J. Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: linear stability analysis for local similar solution. Meccanica. 51 (1), 99–115 (2016).
dc.relation.referencesen[17] Batchelor G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000).
dc.relation.referencesen[18] Karniadakis G., Beskok A., Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York (2005).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectковзання
dc.subjectпотік у точці застою
dc.subjectв’язка дисипація
dc.subjectробота тиску
dc.subjectграничний шар
dc.subjectрозв’язок подібності
dc.subjectslip flow
dc.subjectstagnation point flow
dc.subjectviscous dissipation
dc.subjectpressure work
dc.subjectboundary layer
dc.subjectsimilarity solution
dc.titleForced convection of laminar gaseous slip flow near a stagnation point with viscous dissipation and pressure work
dc.title.alternativeВимушена конвекція ламінарного газоподібного потоку ковзання поблизу точки застою з в’язкою дисипацією та роботою тиску
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v8n4_Essaghir_E-Forced_convection_of_laminar_658-664.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v8n4_Essaghir_E-Forced_convection_of_laminar_658-664__COVER.png
Size:
454.57 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: