Motion Dynamics of a Multicharging System in an Electric Field
dc.citation.epage | 39 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Обчислювальні проблеми електротехніки | |
dc.citation.spage | 35 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Чабан, Василь | |
dc.contributor.author | Tchaban, Vasyl | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-06T07:20:23Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | В електротехічних дослідженнях постає проблема аналізу взаємовпливу рухомих заряджених тіл на їхні траєкторії. Її практичне розв’язання можливе лише на підставі адекватної математичної моделі. З цією метою ми адаптували закон силової взаємодії нерухомих зарядів Ш. Кулона на випадок руху у всеможливому діапазоні швидкостей, урахувавши скінченну швидкість поширення електричної взаємодії. Одержано диференціальні рівняння руху замкненої системи заряджених рухомих тіл у їхньому електричному полі. На цій основі просимульовано перехідні процеси в тризарядній протонно-електронній системі, на зразок електромеханічної рівноваги атома Періодичної системи елементів. Подано результати симуляції. | |
dc.description.abstract | In electrotechnical research there is a problem of analysis of the interaction of moving charged bodies on their trajectories. Its practical solution is possible only on the basis of an adequate mathematical model. To this end, we have adapted the law of force interaction of stationary charges by Charles Coulomb in the case of motion at all possible speeds. This takes into account the finite rate of propagation of the electrical interaction. Differential equations of motion of a closed system of charged moving bodies in their electric field are obtained. On this basis, the transients in a threecharge proton-electron system are simulated, such as the electromechanical equilibrium of an atom of a periodic table of elements. The simulation results are attached. | |
dc.format.extent | 35-39 | |
dc.format.pages | 5 | |
dc.identifier.citation | Tchaban V. Motion Dynamics of a Multicharging System in an Electric Field / Vasyl Tchaban // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 35–39. | |
dc.identifier.citationen | Tchaban V. Motion Dynamics of a Multicharging System in an Electric Field / Vasyl Tchaban // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 35–39. | |
dc.identifier.doi | doi.org/10.23939/jcpee2022.02.035 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63938 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Обчислювальні проблеми електротехніки, 2 (12), 2022 | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 2 (12), 2022 | |
dc.relation.references | [1] N. Roseveare, Mercury’s perihelion. From Le Verrier to Einstein, Moscow: Mir, p. 244, 1985. | |
dc.relation.references | [2] J. Earman and M. Janssen, “Einstein’s Explanation of the Motion of Mercury’s Perihelion”, The Attraction of Gravitation: New Studies in the History of General Relativity: Einstein Studies, Boston: Birkhouser, vol. 5, pp. 129–149, 1993. ISBN 3764336242. | |
dc.relation.references | [3] P. A. M. Dirak, The Principles of Quantum Mechanics. Moscow: Nauka, p. 440, 1979. | |
dc.relation.references | [4] I. O. Vakarchuk, Quantum mechanics, Lviv: LNU of Ivan Franko, p. 872, 2012 (Ukrainian). | |
dc.relation.references | [5] V. Tchaban, “Dynamic of Motion of Electron in Electrical Field”, Meassuring, Equipment and Metrology, vol. 81, no. 2, pp. 39–42, 2020. DOI https://doi.org/ 10.23939/istcmtm2020. 02.039. | |
dc.relation.references | [6] V. Tchaban, Movement in the gravitational and electric fields, Lviv: Space M, p. 140, 2021. ISBN 978-617-8055-01-1 (Ukrainian). | |
dc.relation.references | [7] V. Tchaban, “Radial Componet of Vortex Ektctric Field Force”, Computational Problems of Electrical Engineering, vol. 11, no. 1, pp. 32–35, 2021. | |
dc.relation.references | [8] V. Tchaban, “Electric intraction of electron-proton tandem”, Computational Problems of Electrical Engineering, vol. 11, no. 2, pp. 38–42, 2021. | |
dc.relation.references | [9] M. L.Ruggiero and A. Tartaglia, Gravitomagnetic effects. Nuovo Cim., vol. 117, pp. 743–768, 2002 (grqc/0207065). | |
dc.relation.references | [10] S. J. Clark and R. W. Tucker, “Gauge symmetry and gravito-electromagnetism”, Classical and Quantum Gravity: journal, 2000. | |
dc.relation.referencesen | [1] N. Roseveare, Mercury’s perihelion. From Le Verrier to Einstein, Moscow: Mir, p. 244, 1985. | |
dc.relation.referencesen | [2] J. Earman and M. Janssen, "Einstein’s Explanation of the Motion of Mercury’s Perihelion", The Attraction of Gravitation: New Studies in the History of General Relativity: Einstein Studies, Boston: Birkhouser, vol. 5, pp. 129–149, 1993. ISBN 3764336242. | |
dc.relation.referencesen | [3] P. A. M. Dirak, The Principles of Quantum Mechanics. Moscow: Nauka, p. 440, 1979. | |
dc.relation.referencesen | [4] I. O. Vakarchuk, Quantum mechanics, Lviv: LNU of Ivan Franko, p. 872, 2012 (Ukrainian). | |
dc.relation.referencesen | [5] V. Tchaban, "Dynamic of Motion of Electron in Electrical Field", Meassuring, Equipment and Metrology, vol. 81, no. 2, pp. 39–42, 2020. DOI https://doi.org/ 10.23939/istcmtm2020. 02.039. | |
dc.relation.referencesen | [6] V. Tchaban, Movement in the gravitational and electric fields, Lviv: Space M, p. 140, 2021. ISBN 978-617-8055-01-1 (Ukrainian). | |
dc.relation.referencesen | [7] V. Tchaban, "Radial Componet of Vortex Ektctric Field Force", Computational Problems of Electrical Engineering, vol. 11, no. 1, pp. 32–35, 2021. | |
dc.relation.referencesen | [8] V. Tchaban, "Electric intraction of electron-proton tandem", Computational Problems of Electrical Engineering, vol. 11, no. 2, pp. 38–42, 2021. | |
dc.relation.referencesen | [9] M. L.Ruggiero and A. Tartaglia, Gravitomagnetic effects. Nuovo Cim., vol. 117, pp. 743–768, 2002 (grqc/0207065). | |
dc.relation.referencesen | [10] S. J. Clark and R. W. Tucker, "Gauge symmetry and gravito-electromagnetism", Classical and Quantum Gravity: journal, 2000. | |
dc.relation.uri | https://doi.org/ | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | Coulomb’s law of moving charges | |
dc.subject | finite speed of propagation of the electrical interaction | |
dc.subject | differential equations of motion | |
dc.subject | multicharged moving system | |
dc.subject | Euclidean space | |
dc.subject | physical time | |
dc.title | Motion Dynamics of a Multicharging System in an Electric Field | |
dc.title.alternative | Динаміка руху тризарядної системи в електричному полі | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1