Motion Dynamics of a Multicharging System in an Electric Field

dc.citation.epage39
dc.citation.issue2
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage35
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЧабан, Василь
dc.contributor.authorTchaban, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-06T07:20:23Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractВ електротехічних дослідженнях постає проблема аналізу взаємовпливу рухомих заряджених тіл на їхні траєкторії. Її практичне розв’язання можливе лише на підставі адекватної математичної моделі. З цією метою ми адаптували закон силової взаємодії нерухомих зарядів Ш. Кулона на випадок руху у всеможливому діапазоні швидкостей, урахувавши скінченну швидкість поширення електричної взаємодії. Одержано диференціальні рівняння руху замкненої системи заряджених рухомих тіл у їхньому електричному полі. На цій основі просимульовано перехідні процеси в тризарядній протонно-електронній системі, на зразок електромеханічної рівноваги атома Періодичної системи елементів. Подано результати симуляції.
dc.description.abstractIn electrotechnical research there is a problem of analysis of the interaction of moving charged bodies on their trajectories. Its practical solution is possible only on the basis of an adequate mathematical model. To this end, we have adapted the law of force interaction of stationary charges by Charles Coulomb in the case of motion at all possible speeds. This takes into account the finite rate of propagation of the electrical interaction. Differential equations of motion of a closed system of charged moving bodies in their electric field are obtained. On this basis, the transients in a threecharge proton-electron system are simulated, such as the electromechanical equilibrium of an atom of a periodic table of elements. The simulation results are attached.
dc.format.extent35-39
dc.format.pages5
dc.identifier.citationTchaban V. Motion Dynamics of a Multicharging System in an Electric Field / Vasyl Tchaban // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 35–39.
dc.identifier.citationenTchaban V. Motion Dynamics of a Multicharging System in an Electric Field / Vasyl Tchaban // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 35–39.
dc.identifier.doidoi.org/10.23939/jcpee2022.02.035
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63938
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 2 (12), 2022
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (12), 2022
dc.relation.references[1] N. Roseveare, Mercury’s perihelion. From Le Verrier to Einstein, Moscow: Mir, p. 244, 1985.
dc.relation.references[2] J. Earman and M. Janssen, “Einstein’s Explanation of the Motion of Mercury’s Perihelion”, The Attraction of Gravitation: New Studies in the History of General Relativity: Einstein Studies, Boston: Birkhouser, vol. 5, pp. 129–149, 1993. ISBN 3764336242.
dc.relation.references[3] P. A. M. Dirak, The Principles of Quantum Mechanics. Moscow: Nauka, p. 440, 1979.
dc.relation.references[4] I. O. Vakarchuk, Quantum mechanics, Lviv: LNU of Ivan Franko, p. 872, 2012 (Ukrainian).
dc.relation.references[5] V. Tchaban, “Dynamic of Motion of Electron in Electrical Field”, Meassuring, Equipment and Metrology, vol. 81, no. 2, pp. 39–42, 2020. DOI https://doi.org/ 10.23939/istcmtm2020. 02.039.
dc.relation.references[6] V. Tchaban, Movement in the gravitational and electric fields, Lviv: Space M, p. 140, 2021. ISBN 978-617-8055-01-1 (Ukrainian).
dc.relation.references[7] V. Tchaban, “Radial Componet of Vortex Ektctric Field Force”, Computational Problems of Electrical Engineering, vol. 11, no. 1, pp. 32–35, 2021.
dc.relation.references[8] V. Tchaban, “Electric intraction of electron-proton tandem”, Computational Problems of Electrical Engineering, vol. 11, no. 2, pp. 38–42, 2021.
dc.relation.references[9] M. L.Ruggiero and A. Tartaglia, Gravitomagnetic effects. Nuovo Cim., vol. 117, pp. 743–768, 2002 (grqc/0207065).
dc.relation.references[10] S. J. Clark and R. W. Tucker, “Gauge symmetry and gravito-electromagnetism”, Classical and Quantum Gravity: journal, 2000.
dc.relation.referencesen[1] N. Roseveare, Mercury’s perihelion. From Le Verrier to Einstein, Moscow: Mir, p. 244, 1985.
dc.relation.referencesen[2] J. Earman and M. Janssen, "Einstein’s Explanation of the Motion of Mercury’s Perihelion", The Attraction of Gravitation: New Studies in the History of General Relativity: Einstein Studies, Boston: Birkhouser, vol. 5, pp. 129–149, 1993. ISBN 3764336242.
dc.relation.referencesen[3] P. A. M. Dirak, The Principles of Quantum Mechanics. Moscow: Nauka, p. 440, 1979.
dc.relation.referencesen[4] I. O. Vakarchuk, Quantum mechanics, Lviv: LNU of Ivan Franko, p. 872, 2012 (Ukrainian).
dc.relation.referencesen[5] V. Tchaban, "Dynamic of Motion of Electron in Electrical Field", Meassuring, Equipment and Metrology, vol. 81, no. 2, pp. 39–42, 2020. DOI https://doi.org/ 10.23939/istcmtm2020. 02.039.
dc.relation.referencesen[6] V. Tchaban, Movement in the gravitational and electric fields, Lviv: Space M, p. 140, 2021. ISBN 978-617-8055-01-1 (Ukrainian).
dc.relation.referencesen[7] V. Tchaban, "Radial Componet of Vortex Ektctric Field Force", Computational Problems of Electrical Engineering, vol. 11, no. 1, pp. 32–35, 2021.
dc.relation.referencesen[8] V. Tchaban, "Electric intraction of electron-proton tandem", Computational Problems of Electrical Engineering, vol. 11, no. 2, pp. 38–42, 2021.
dc.relation.referencesen[9] M. L.Ruggiero and A. Tartaglia, Gravitomagnetic effects. Nuovo Cim., vol. 117, pp. 743–768, 2002 (grqc/0207065).
dc.relation.referencesen[10] S. J. Clark and R. W. Tucker, "Gauge symmetry and gravito-electromagnetism", Classical and Quantum Gravity: journal, 2000.
dc.relation.urihttps://doi.org/
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectCoulomb’s law of moving charges
dc.subjectfinite speed of propagation of the electrical interaction
dc.subjectdifferential equations of motion
dc.subjectmulticharged moving system
dc.subjectEuclidean space
dc.subjectphysical time
dc.titleMotion Dynamics of a Multicharging System in an Electric Field
dc.title.alternativeДинаміка руху тризарядної системи в електричному полі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v12n2_Tchaban_V-Motion_Dynamics_of_a_Multicharging_35-39.pdf
Size:
261.29 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v12n2_Tchaban_V-Motion_Dynamics_of_a_Multicharging_35-39__COVER.png
Size:
1.43 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: