Path integral method for stochastic equations of financial engineering
dc.citation.epage | 177 | |
dc.citation.issue | 1 | |
dc.citation.spage | 166 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Янішевський, В. С. | |
dc.contributor.author | Барановська, С. П. | |
dc.contributor.author | Yanishevskyi, V. S. | |
dc.contributor.author | Baranovska, S. P. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-12-13T09:11:03Z | |
dc.date.available | 2023-12-13T09:11:03Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Метод функціонального інтегрування застосовано для визначення деяких середніх випадкових величини, що зустрічаються в задачах фінансової інженерії. Випадкова величина задається стохастичним рівнянням, де дрейф та волатильність є функціями випадкової величини. В результаті для густини умовної ймовірності побудовано функціональний інтеграл шляхом заміни змінних у функціональному інтегралі Вінера (мірі Вінера). Для стохастичного рівняння використано правило Іто для інтерпретації стохастичного інтегралу. Функціональний інтеграл для густини умовної ймовірності знайдено також у результаті розв’язку рівняння Фоккера–Планка, що відповідає стохастичному рівнянню. Показано, що два підходи дають еквівалентні результати. | |
dc.description.abstract | The integral path method was applied to determine certain stochastic variables which occur in problems of financial engineering. A stochastic variable was defined by a stochastic equation where drift and volatility are functions of a stochastic variable. As a result, for transition probability density, a path integral was built by substituting variables Wiener’s path integral (Wiener’s measure). For the stochastic equation, Ito rule was applied in order to interpret a stochastic integral. The path integral for transition probability density was also found as a result of the Fokker–Planck equation solution, corresponding to the stochastic equation. It was shown that these two approaches give equivalent results. | |
dc.format.extent | 166-177 | |
dc.format.pages | 12 | |
dc.identifier.citation | Yanishevskyi V. S. Path integral method for stochastic equations of financial engineering / V. S. Yanishevskyi, S. P. Baranovska // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 166–177. | |
dc.identifier.citationen | Yanishevskyi V. S. Path integral method for stochastic equations of financial engineering / V. S. Yanishevskyi, S. P. Baranovska // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 166–177. | |
dc.identifier.doi | 10.23939/mmc2022.01.166 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60547 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (9), 2022 | |
dc.relation.references | [1] Gardiner C. W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics (2004). | |
dc.relation.references | [2] Øksendal B. K. Stochastic differential equations: an introduction with applications. Springer–Verlag, Berlin, Heidelberg (2003). | |
dc.relation.references | [3] Chaichian M., Demichev A. Path integrals in physics. Stochastic processes and quantum mechanics. Taylor & Francis (2001). | |
dc.relation.references | [4] Kleinert H. Path integrals in quantum mechanics, statistics, polymer physics and financial markets. World Scientific Publishing Co. (2004). | |
dc.relation.references | [5] Chaichian M., Demichev A. Path integrals in physics. QFT, statistical physics and modern applications. Taylor & Francis (2001). | |
dc.relation.references | [6] Linetsky V. The Path Integral Approach to Financial Modeling and Options Pricing. Computational Economics. 11, 129–163 (1998). | |
dc.relation.references | [7] Goovaerts M., De Schepper A., Decamps M. Closed-form approximations for diffusion densities: a path integral approach. Journal of Computational and Applied Mathematics. 164–165, 337–364 (2004). | |
dc.relation.references | [8] Yanishevskyi V. S., Nodzhak L. S. The path integral method in interest rate models. Mathematical Modeling and Computing. 8 (1), 125–136 (2021). | |
dc.relation.references | [9] Baaquie B. E. Quantum finance. Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press, New York (2004). | |
dc.relation.references | [10] Jurisch A. Lagrangian dynamics in inhomogeneous and thermal environments. An application of the Onsager–Machlup theory I. Preprint arXiv:2012.06820v1 (2020). | |
dc.relation.references | [11] Arnold P. Symmetric path integrals for stochastic equations with multiplicative noise. Physical Review E. 61, 6099 (2000). | |
dc.relation.references | [12] Bressloff P. C. Construction of stochastic hybrid path integrals using operator methods. Journal of Physics A: Mathematical and Theoretical. 54 (18), 185001 (2021). | |
dc.relation.references | [13] Cugliandolo L. F., Lecomte V., van Wijland F. Building a path-integral calculus: a covariant discretization approach. Journal of Physics A: Mathematical and Theoretical. 52, 50LT01 (2019). | |
dc.relation.references | [14] Cugliandolo L. F., Lecomte V. Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager–Machlup approach. Journal of Physics A: Mathematical and Theoretical. 50, 345001 (2017). | |
dc.relation.references | [15] Arenas Z. G., Barci D. G. Functional integral approach for multiplicative stochastic processes. Physical Review E. 81, 051113 (2010). | |
dc.relation.references | [16] Lyuu Y.-D. Financial Engineering and Computation: Principles, Mathematics, and Algorithms. Cambridge University Press (2004). | |
dc.relation.references | [17] Yanishevsky V. S. Application of the path integral method to some stochastic models of financial engineering. Journal of Physical Studies. 25 (2), 2801 (2021). | |
dc.relation.references | [18] Nazajkinsky B. J., Sternin B. Y., Shalatov В. J. The methods of non-commutive analysis. Moscov, Tehnosfera (2002), (in Russian). | |
dc.relation.references | [19] Blazhievskii L. F. Path integrals and ordering of operators. Theoretical and Mathematical Physics. 40, 596–604 (1979). | |
dc.relation.references | [20] Blazhyevskyi L. F., Yanishevsky V. S. The path integral representation kernel of evolution operator in Merton-Garman model. Condensed Matter Physics. 14 (2), 23001 (2011). | |
dc.relation.references | [21] Grosche C., Steiner F. Handbook of Feynman Path Integrals. Springer, Berlin, Heidelberg (1998). | |
dc.relation.referencesen | [1] Gardiner C. W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics (2004). | |
dc.relation.referencesen | [2] Øksendal B. K. Stochastic differential equations: an introduction with applications. Springer–Verlag, Berlin, Heidelberg (2003). | |
dc.relation.referencesen | [3] Chaichian M., Demichev A. Path integrals in physics. Stochastic processes and quantum mechanics. Taylor & Francis (2001). | |
dc.relation.referencesen | [4] Kleinert H. Path integrals in quantum mechanics, statistics, polymer physics and financial markets. World Scientific Publishing Co. (2004). | |
dc.relation.referencesen | [5] Chaichian M., Demichev A. Path integrals in physics. QFT, statistical physics and modern applications. Taylor & Francis (2001). | |
dc.relation.referencesen | [6] Linetsky V. The Path Integral Approach to Financial Modeling and Options Pricing. Computational Economics. 11, 129–163 (1998). | |
dc.relation.referencesen | [7] Goovaerts M., De Schepper A., Decamps M. Closed-form approximations for diffusion densities: a path integral approach. Journal of Computational and Applied Mathematics. 164–165, 337–364 (2004). | |
dc.relation.referencesen | [8] Yanishevskyi V. S., Nodzhak L. S. The path integral method in interest rate models. Mathematical Modeling and Computing. 8 (1), 125–136 (2021). | |
dc.relation.referencesen | [9] Baaquie B. E. Quantum finance. Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press, New York (2004). | |
dc.relation.referencesen | [10] Jurisch A. Lagrangian dynamics in inhomogeneous and thermal environments. An application of the Onsager–Machlup theory I. Preprint arXiv:2012.06820v1 (2020). | |
dc.relation.referencesen | [11] Arnold P. Symmetric path integrals for stochastic equations with multiplicative noise. Physical Review E. 61, 6099 (2000). | |
dc.relation.referencesen | [12] Bressloff P. C. Construction of stochastic hybrid path integrals using operator methods. Journal of Physics A: Mathematical and Theoretical. 54 (18), 185001 (2021). | |
dc.relation.referencesen | [13] Cugliandolo L. F., Lecomte V., van Wijland F. Building a path-integral calculus: a covariant discretization approach. Journal of Physics A: Mathematical and Theoretical. 52, 50LT01 (2019). | |
dc.relation.referencesen | [14] Cugliandolo L. F., Lecomte V. Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager–Machlup approach. Journal of Physics A: Mathematical and Theoretical. 50, 345001 (2017). | |
dc.relation.referencesen | [15] Arenas Z. G., Barci D. G. Functional integral approach for multiplicative stochastic processes. Physical Review E. 81, 051113 (2010). | |
dc.relation.referencesen | [16] Lyuu Y.-D. Financial Engineering and Computation: Principles, Mathematics, and Algorithms. Cambridge University Press (2004). | |
dc.relation.referencesen | [17] Yanishevsky V. S. Application of the path integral method to some stochastic models of financial engineering. Journal of Physical Studies. 25 (2), 2801 (2021). | |
dc.relation.referencesen | [18] Nazajkinsky B. J., Sternin B. Y., Shalatov V. J. The methods of non-commutive analysis. Moscov, Tehnosfera (2002), (in Russian). | |
dc.relation.referencesen | [19] Blazhievskii L. F. Path integrals and ordering of operators. Theoretical and Mathematical Physics. 40, 596–604 (1979). | |
dc.relation.referencesen | [20] Blazhyevskyi L. F., Yanishevsky V. S. The path integral representation kernel of evolution operator in Merton-Garman model. Condensed Matter Physics. 14 (2), 23001 (2011). | |
dc.relation.referencesen | [21] Grosche C., Steiner F. Handbook of Feynman Path Integrals. Springer, Berlin, Heidelberg (1998). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | стохастичне рівняння | |
dc.subject | густина умовної ймовірності | |
dc.subject | рівняння Фоккера–Планка | |
dc.subject | функціональний інтеграл | |
dc.subject | stochastic equation | |
dc.subject | Fokker–Plank equation | |
dc.subject | transition probability density | |
dc.subject | path integrals | |
dc.title | Path integral method for stochastic equations of financial engineering | |
dc.title.alternative | Метод функціонального інтегрування в стохастичних рівняннях фінансової інженерії | |
dc.type | Article |
Files
License bundle
1 - 1 of 1