Asymptotic stepwise solutions of the Korteweg–de Vries equation with a singular perturbation and their accuracy
dc.citation.epage | 421 | |
dc.citation.issue | 3 | |
dc.citation.spage | 410 | |
dc.contributor.affiliation | Київський національний університет імені Тараса Шевченка | |
dc.contributor.affiliation | Київський університет імені Бориса Грінченка | |
dc.contributor.affiliation | Taras Shevchenko National University of Kyiv | |
dc.contributor.affiliation | Borys Grinchenko Kyiv University | |
dc.contributor.author | Ляшко, С. І. | |
dc.contributor.author | Самойленко, В. Г. | |
dc.contributor.author | Самойленко, Ю. І. | |
dc.contributor.author | Гап’як, І. В. | |
dc.contributor.author | Орлова, М. С. | |
dc.contributor.author | Lyashko, S. I. | |
dc.contributor.author | Samoilenko, V. H. | |
dc.contributor.author | Samoilenko, Yu. I. | |
dc.contributor.author | Gapyak, I. V. | |
dc.contributor.author | Orlova, M. S. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-10-25T07:19:17Z | |
dc.date.available | 2023-10-25T07:19:17Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Дана стаття стосується побудови асимптотичних солітоноподібних розв’язків сходинкового типу для рівняння Кортевега–де Фріза зі змінними коефіцієнтами та малим параметром при старшій похідній. Асимптотичний сходинкового типу будується за допомогою нелінійного методу ВКБ. Представлено алгоритм побудови вищих асимптотичних наближень, доведено теорему про їх точність. Запропонований алгоритм продемонстровано на прикладі рівняння із конкретно заданими змінними коефіцієнтами. Знайдено основний доданок та перше асимптотичне наближення для даного прикладу, проведено їх аналіз та представлено твердження про їх асимптотичну точність. | |
dc.description.abstract | The paper deals with the Korteweg-de Vries equation with variable coefficients and a small parameter at the highest derivative. The asymptotic step-like solution to the equation is obtained by the non-linear WKB technique. An algorithm of constructing the higher terms of the asymptotic step-like solutions is presented. The theorem on the accuracy of the higher asymptotic approximations is proven. The proposed technique is demonstrated by example of the equation with given variable coefficients. The main term and the first asymptotic approximation of the given example are found, their analysis is done and statement of the approximate solutions accuracy is presented. | |
dc.format.extent | 410-421 | |
dc.format.pages | 12 | |
dc.identifier.citation | Asymptotic stepwise solutions of the Korteweg–de Vries equation with a singular perturbation and their accuracy / S. I. Lyashko, V. H. Samoilenko, Yu. I. Samoilenko, I. V. Gapyak, M. S. Orlova // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 410–421. | |
dc.identifier.citationen | Asymptotic stepwise solutions of the Korteweg–de Vries equation with a singular perturbation and their accuracy / S. I. Lyashko, V. H. Samoilenko, Yu. I. Samoilenko, I. V. Gapyak, M. S. Orlova // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 410–421. | |
dc.identifier.doi | doi.org/10.23939/mmc2021.03.410 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60415 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (8), 2021 | |
dc.relation.references | [1] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Lyashko N. I. Asymptotic analysis of the Korteweg-de Vries equation by the nonlinear WKB method. Mathematical Modelling and Computing. 8 (3), 410–420 (2021). | |
dc.relation.references | [2] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Lyashko N. I. Stepwise asymptotic solutions to the Korteweg–de Vries equation with variable coefficients and a small parameter at the higher-order derivative. Cybernetics and Systems Analysis. 56 (6), 934–942 (2020). | |
dc.relation.references | [3] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Gapyak I. V., Lyashko N. I., Orlova M. S. Global asymptotic step-type solutions to singularly perturbed Korteweg-de Vries equation with variable coefficients. Journal of Automation and Information Sciences. 52 (9), 27–38 (2020). | |
dc.relation.references | [4] Ablowitz M. J. Nonlinear dispersive waves. Asymptotic analysis and solitons. Cambridge University Press, Cambridge (2011). | |
dc.relation.references | [5] Miura R. M., Kruskal M. D. Application of nonlinear WKB-method to the Korteweg–de Vries equation. SIAM Appl. Math. 26 (2), 376–395 (1974). | |
dc.relation.references | [6] Maslov V. P., Omel’yanov G. O. Geometric asymptotics for PDE. American Math. Society, Providence (2001). | |
dc.relation.references | [7] Samoilenko V. H., Samoilenko Yu. I. Asymptotic two-phase soliton-like solutions of the singularly perturbed Korteweg–de Vries equation with variable coefficients. Ukrainian Mathematical Journal. 60 (3), 449–461 (2008). | |
dc.relation.references | [8] Samoilenko V. H., Samoilenko Yu. I., Limarchenko V. O., Vovk V. S., Zaitseva K. S. Asymptotic solutions of soliton-type of the Korteweg–de Vries equation with variable coefficients and singular perturbation. Mathematical Modeling and Computing. 6 (2), 374–385 (2019). | |
dc.relation.references | [9] Samoilenko V. H., Samoilenko Yu. I. Asymptotic expansions for one-phase soliton-type solutions of the Korteweg-de Vries equation with variable coefficients. Ukranian Mathematical Journal. 57 (1), 132–148 (2005). | |
dc.relation.references | [10] Krantz S. G., Parks H. R. The implicit function theorem: history, theory and appications. Birkhausers, Boston (2002). | |
dc.relation.references | [11] Samoilenko V. H., Kaplun Yu. I. Existence and extendability of solutions of the equation g(t, x) = 0. Ukrainian Mathematical Journal. 53 (3), 427–437 (2001). | |
dc.relation.references | [12] Samoilenko V. H., Samoilenko Yu. I. Existence of a solution to the inhomogeneous equation with the onedimensional Schrodinger operator in the space of quickly decreasing functions. Journal of Mathematical Sciences. 187 (1), 70–76 (2012). | |
dc.relation.referencesen | [1] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Lyashko N. I. Asymptotic analysis of the Korteweg-de Vries equation by the nonlinear WKB method. Mathematical Modelling and Computing. 8 (3), 410–420 (2021). | |
dc.relation.referencesen | [2] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Lyashko N. I. Stepwise asymptotic solutions to the Korteweg–de Vries equation with variable coefficients and a small parameter at the higher-order derivative. Cybernetics and Systems Analysis. 56 (6), 934–942 (2020). | |
dc.relation.referencesen | [3] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Gapyak I. V., Lyashko N. I., Orlova M. S. Global asymptotic step-type solutions to singularly perturbed Korteweg-de Vries equation with variable coefficients. Journal of Automation and Information Sciences. 52 (9), 27–38 (2020). | |
dc.relation.referencesen | [4] Ablowitz M. J. Nonlinear dispersive waves. Asymptotic analysis and solitons. Cambridge University Press, Cambridge (2011). | |
dc.relation.referencesen | [5] Miura R. M., Kruskal M. D. Application of nonlinear WKB-method to the Korteweg–de Vries equation. SIAM Appl. Math. 26 (2), 376–395 (1974). | |
dc.relation.referencesen | [6] Maslov V. P., Omel’yanov G. O. Geometric asymptotics for PDE. American Math. Society, Providence (2001). | |
dc.relation.referencesen | [7] Samoilenko V. H., Samoilenko Yu. I. Asymptotic two-phase soliton-like solutions of the singularly perturbed Korteweg–de Vries equation with variable coefficients. Ukrainian Mathematical Journal. 60 (3), 449–461 (2008). | |
dc.relation.referencesen | [8] Samoilenko V. H., Samoilenko Yu. I., Limarchenko V. O., Vovk V. S., Zaitseva K. S. Asymptotic solutions of soliton-type of the Korteweg–de Vries equation with variable coefficients and singular perturbation. Mathematical Modeling and Computing. 6 (2), 374–385 (2019). | |
dc.relation.referencesen | [9] Samoilenko V. H., Samoilenko Yu. I. Asymptotic expansions for one-phase soliton-type solutions of the Korteweg-de Vries equation with variable coefficients. Ukranian Mathematical Journal. 57 (1), 132–148 (2005). | |
dc.relation.referencesen | [10] Krantz S. G., Parks H. R. The implicit function theorem: history, theory and appications. Birkhausers, Boston (2002). | |
dc.relation.referencesen | [11] Samoilenko V. H., Kaplun Yu. I. Existence and extendability of solutions of the equation g(t, x) = 0. Ukrainian Mathematical Journal. 53 (3), 427–437 (2001). | |
dc.relation.referencesen | [12] Samoilenko V. H., Samoilenko Yu. I. Existence of a solution to the inhomogeneous equation with the onedimensional Schrodinger operator in the space of quickly decreasing functions. Journal of Mathematical Sciences. 187 (1), 70–76 (2012). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | рівняння Кортевега–де Фріза | |
dc.subject | асимптотичний розв’язок типу сходинки | |
dc.subject | солітон | |
dc.subject | сингулярне збурення | |
dc.subject | асимптотичні розв’язки | |
dc.subject | Korteweg–de Vries equation | |
dc.subject | nonlinear WKB technique | |
dc.subject | asymptotic step-like solution | |
dc.subject | soliton | |
dc.subject | singular perturbation | |
dc.subject | asymptotic analysis | |
dc.title | Asymptotic stepwise solutions of the Korteweg–de Vries equation with a singular perturbation and their accuracy | |
dc.title.alternative | Асимптотичні розв’язки сходинкового типу для рівняння Кортевега–де Фріза із сингулярним збуренням та їх точність | |
dc.type | Article |
Files
License bundle
1 - 1 of 1