Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface
dc.citation.epage | 455 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Chemistry & Chemical Technology | |
dc.citation.spage | 451 | |
dc.citation.volume | 12 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Kostrobii, Petro | |
dc.contributor.author | Ryzha, Iryna | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2019-06-21T07:58:05Z | |
dc.date.available | 2019-06-21T07:58:05Z | |
dc.date.created | 2018-01-20 | |
dc.date.issued | 2018-01-20 | |
dc.description.abstract | Досліджено двовимірну математичну мо- дель оксидації карбон (II) оксиду (СО) на поверхні платинового каталізатора (Pt) згідно механізму Лангмюра-Гіншелвуда. Враховано впливи структурних змін каталітичної поверхні та температури підложки. Показано, що врахування двови- мірностіта структурних змін веде до зміни як динаміки про- цесу оксидації, так і області стійкості. | |
dc.description.abstract | The two-dimensional mathematical model for carbon monoxide (СО) oxidation on the platinum (Pt) catalyst surface is investigated according to the Langmuir- Hinshelwood (LH) mechanism. The effects of structural changes of the catalytic surface and the substrate temperature are taken into account. It is shown that when twodimensionality and structural changes are accounted for, both the dynamics of oxidation process and the stability region change. | |
dc.format.extent | 451-455 | |
dc.format.pages | 5 | |
dc.identifier.citation | Kostrobii P. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface / Petro Kostrobii, Iryna Ryzha // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 451–455. | |
dc.identifier.citationen | Kostrobii P. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface / Petro Kostrobii, Iryna Ryzha // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 451–455. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/45210 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (12), 2018 | |
dc.relation.references | [1] Baxter R., Hu P.: J. Chem. Phys., 2002, 116, 4379.https://doi.org/10.1063/1.1458938 | |
dc.relation.references | [2]WilfM., Dawson P.: Surf. Sci., 1977, 65, 399.https://doi.org/10.1016/0039-6028(77)90456-3 | |
dc.relation.references | [3] GomerR.: Rep. Prog. Phys., 1990, 53, 917.https://doi.org/10.1088/0034-4885/53/7/002 | |
dc.relation.references | [4] Kellogg G.: Phys. Rev. Lett., 1985, 55, 2168.https://doi.org/10.1103/PhysRevLett.55.2168 | |
dc.relation.references | [5] Gritsch T., Coulman D., Behm R., Ertl G: Phys. Rev. Lett.,1989, 63, 1086. https://doi.org/10.1103/PhysRevLett.63.1086 | |
dc.relation.references | [6] Krischer K., EiswirthM., Ertl G.: J. Chem. Phys., 1992, 96,9161. https://doi.org/10.1063/1.462226 | |
dc.relation.references | [7] Bzovska I., Mryglod I.: Condens. Matter. Phys., 2010, 13,34801. https://doi.org/10.5488/CMP.13.34801 | |
dc.relation.references | [8] Kostrobij P., Ryzha I.:Math. Model.Comput., 2016, 3, 146.https://doi.org/10.23939/mmc2016.02.146 | |
dc.relation.references | [9] Gasser R., Smith. E.: Phys. Lett., 1967, 1, 457. | |
dc.relation.references | [10] BertramM., Mikhailov A.: Phys. Rev. E., 2003, 67, 036207.https://doi.org/10.1103/PhysRevE.67.036207 | |
dc.relation.references | [11] Cisternas Y., Holmes P., Kevrekidis I., Li X.: J. Chem. Phys.,2003, 118, 3312. https://doi.org/10.1063/1.1531070 | |
dc.relation.references | [12] Connors K.: Chemical Kinetics. The Study of Reaction Rates in Solution. VCH Publishers, New York 1990. | |
dc.relation.references | [13] Kostrobiy P., Markovych B., Suchorski Y.: Solid State Phenom., 2007, 128, 219.https://doi.org/10.4028/www.scientific.net/SSP.128.219 | |
dc.relation.references | [14] Holst B., Piskur J., Kostrobiy P. et al.: Ultramicroscopy, 2009,109, 413. https://doi.org/10.1016/j.ultramic.2008.11.021 | |
dc.relation.references | [15] Suchorski Y.: private communication. | |
dc.relation.references | [16] Bzovska I., Mryglod I.: Ukr. Phys. J., 2016, 61, 140.https://doi.org/10.15407/ujpe61.02.0134 | |
dc.relation.references | [17] EiswirthM., Krischer K., Ertl G.: Appl. Phys. A., 1990, 51, 79.https://doi.org/10.1007/BF00324269 | |
dc.relation.referencesen | [1] Baxter R., Hu P., J. Chem. Phys., 2002, 116, 4379.https://doi.org/10.1063/1.1458938 | |
dc.relation.referencesen | [2]WilfM., Dawson P., Surf. Sci., 1977, 65, 399.https://doi.org/10.1016/0039-6028(77)90456-3 | |
dc.relation.referencesen | [3] GomerR., Rep. Prog. Phys., 1990, 53, 917.https://doi.org/10.1088/0034-4885/53/7/002 | |
dc.relation.referencesen | [4] Kellogg G., Phys. Rev. Lett., 1985, 55, 2168.https://doi.org/10.1103/PhysRevLett.55.2168 | |
dc.relation.referencesen | [5] Gritsch T., Coulman D., Behm R., Ertl G: Phys. Rev. Lett.,1989, 63, 1086. https://doi.org/10.1103/PhysRevLett.63.1086 | |
dc.relation.referencesen | [6] Krischer K., EiswirthM., Ertl G., J. Chem. Phys., 1992, 96,9161. https://doi.org/10.1063/1.462226 | |
dc.relation.referencesen | [7] Bzovska I., Mryglod I., Condens. Matter. Phys., 2010, 13,34801. https://doi.org/10.5488/CMP.13.34801 | |
dc.relation.referencesen | [8] Kostrobij P., Ryzha I.:Math. Model.Comput., 2016, 3, 146.https://doi.org/10.23939/mmc2016.02.146 | |
dc.relation.referencesen | [9] Gasser R., Smith. E., Phys. Lett., 1967, 1, 457. | |
dc.relation.referencesen | [10] BertramM., Mikhailov A., Phys. Rev. E., 2003, 67, 036207.https://doi.org/10.1103/PhysRevE.67.036207 | |
dc.relation.referencesen | [11] Cisternas Y., Holmes P., Kevrekidis I., Li X., J. Chem. Phys.,2003, 118, 3312. https://doi.org/10.1063/1.1531070 | |
dc.relation.referencesen | [12] Connors K., Chemical Kinetics. The Study of Reaction Rates in Solution. VCH Publishers, New York 1990. | |
dc.relation.referencesen | [13] Kostrobiy P., Markovych B., Suchorski Y., Solid State Phenom., 2007, 128, 219.https://doi.org/10.4028/www.scientific.net/SSP.128.219 | |
dc.relation.referencesen | [14] Holst B., Piskur J., Kostrobiy P. et al., Ultramicroscopy, 2009,109, 413. https://doi.org/10.1016/j.ultramic.2008.11.021 | |
dc.relation.referencesen | [15] Suchorski Y., private communication. | |
dc.relation.referencesen | [16] Bzovska I., Mryglod I., Ukr. Phys. J., 2016, 61, 140.https://doi.org/10.15407/ujpe61.02.0134 | |
dc.relation.referencesen | [17] EiswirthM., Krischer K., Ertl G., Appl. Phys. A., 1990, 51, 79.https://doi.org/10.1007/BF00324269 | |
dc.relation.uri | https://doi.org/10.1063/1.1458938 | |
dc.relation.uri | https://doi.org/10.1016/0039-6028(77)90456-3 | |
dc.relation.uri | https://doi.org/10.1088/0034-4885/53/7/002 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevLett.55.2168 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevLett.63.1086 | |
dc.relation.uri | https://doi.org/10.1063/1.462226 | |
dc.relation.uri | https://doi.org/10.5488/CMP.13.34801 | |
dc.relation.uri | https://doi.org/10.23939/mmc2016.02.146 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevE.67.036207 | |
dc.relation.uri | https://doi.org/10.1063/1.1531070 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/SSP.128.219 | |
dc.relation.uri | https://doi.org/10.1016/j.ultramic.2008.11.021 | |
dc.relation.uri | https://doi.org/10.15407/ujpe61.02.0134 | |
dc.relation.uri | https://doi.org/10.1007/BF00324269 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2018 | |
dc.rights.holder | ©Kostrobii P., Ryzha I., 2019 | |
dc.subject | каталітична реакція окиснення | |
dc.subject | реак- ційно-дифузійна модель | |
dc.subject | математичне моделювання реакційно- дифузійних процесів | |
dc.subject | reaction of catalytic oxidation | |
dc.subject | reactiondiffusion model | |
dc.subject | mathematical modeling of reactiondiffusion processes | |
dc.title | Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface | |
dc.title.alternative | Двовимірна математична модель процесу оксидації карбон (ІІ) оксиду на поверхні платинового каталізатора | |
dc.type | Article |
Files
License bundle
1 - 1 of 1