Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface

dc.citation.epage455
dc.citation.issue4
dc.citation.journalTitleChemistry & Chemical Technology
dc.citation.spage451
dc.citation.volume12
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKostrobii, Petro
dc.contributor.authorRyzha, Iryna
dc.coverage.placenameLviv
dc.date.accessioned2019-06-21T07:58:05Z
dc.date.available2019-06-21T07:58:05Z
dc.date.created2018-01-20
dc.date.issued2018-01-20
dc.description.abstractДосліджено двовимірну математичну мо- дель оксидації карбон (II) оксиду (СО) на поверхні платинового каталізатора (Pt) згідно механізму Лангмюра-Гіншелвуда. Враховано впливи структурних змін каталітичної поверхні та температури підложки. Показано, що врахування двови- мірностіта структурних змін веде до зміни як динаміки про- цесу оксидації, так і області стійкості.
dc.description.abstractThe two-dimensional mathematical model for carbon monoxide (СО) oxidation on the platinum (Pt) catalyst surface is investigated according to the Langmuir- Hinshelwood (LH) mechanism. The effects of structural changes of the catalytic surface and the substrate temperature are taken into account. It is shown that when twodimensionality and structural changes are accounted for, both the dynamics of oxidation process and the stability region change.
dc.format.extent451-455
dc.format.pages5
dc.identifier.citationKostrobii P. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface / Petro Kostrobii, Iryna Ryzha // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 451–455.
dc.identifier.citationenKostrobii P. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface / Petro Kostrobii, Iryna Ryzha // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 451–455.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45210
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (12), 2018
dc.relation.references[1] Baxter R., Hu P.: J. Chem. Phys., 2002, 116, 4379.https://doi.org/10.1063/1.1458938
dc.relation.references[2]WilfM., Dawson P.: Surf. Sci., 1977, 65, 399.https://doi.org/10.1016/0039-6028(77)90456-3
dc.relation.references[3] GomerR.: Rep. Prog. Phys., 1990, 53, 917.https://doi.org/10.1088/0034-4885/53/7/002
dc.relation.references[4] Kellogg G.: Phys. Rev. Lett., 1985, 55, 2168.https://doi.org/10.1103/PhysRevLett.55.2168
dc.relation.references[5] Gritsch T., Coulman D., Behm R., Ertl G: Phys. Rev. Lett.,1989, 63, 1086. https://doi.org/10.1103/PhysRevLett.63.1086
dc.relation.references[6] Krischer K., EiswirthM., Ertl G.: J. Chem. Phys., 1992, 96,9161. https://doi.org/10.1063/1.462226
dc.relation.references[7] Bzovska I., Mryglod I.: Condens. Matter. Phys., 2010, 13,34801. https://doi.org/10.5488/CMP.13.34801
dc.relation.references[8] Kostrobij P., Ryzha I.:Math. Model.Comput., 2016, 3, 146.https://doi.org/10.23939/mmc2016.02.146
dc.relation.references[9] Gasser R., Smith. E.: Phys. Lett., 1967, 1, 457.
dc.relation.references[10] BertramM., Mikhailov A.: Phys. Rev. E., 2003, 67, 036207.https://doi.org/10.1103/PhysRevE.67.036207
dc.relation.references[11] Cisternas Y., Holmes P., Kevrekidis I., Li X.: J. Chem. Phys.,2003, 118, 3312. https://doi.org/10.1063/1.1531070
dc.relation.references[12] Connors K.: Chemical Kinetics. The Study of Reaction Rates in Solution. VCH Publishers, New York 1990.
dc.relation.references[13] Kostrobiy P., Markovych B., Suchorski Y.: Solid State Phenom., 2007, 128, 219.https://doi.org/10.4028/www.scientific.net/SSP.128.219
dc.relation.references[14] Holst B., Piskur J., Kostrobiy P. et al.: Ultramicroscopy, 2009,109, 413. https://doi.org/10.1016/j.ultramic.2008.11.021
dc.relation.references[15] Suchorski Y.: private communication.
dc.relation.references[16] Bzovska I., Mryglod I.: Ukr. Phys. J., 2016, 61, 140.https://doi.org/10.15407/ujpe61.02.0134
dc.relation.references[17] EiswirthM., Krischer K., Ertl G.: Appl. Phys. A., 1990, 51, 79.https://doi.org/10.1007/BF00324269
dc.relation.referencesen[1] Baxter R., Hu P., J. Chem. Phys., 2002, 116, 4379.https://doi.org/10.1063/1.1458938
dc.relation.referencesen[2]WilfM., Dawson P., Surf. Sci., 1977, 65, 399.https://doi.org/10.1016/0039-6028(77)90456-3
dc.relation.referencesen[3] GomerR., Rep. Prog. Phys., 1990, 53, 917.https://doi.org/10.1088/0034-4885/53/7/002
dc.relation.referencesen[4] Kellogg G., Phys. Rev. Lett., 1985, 55, 2168.https://doi.org/10.1103/PhysRevLett.55.2168
dc.relation.referencesen[5] Gritsch T., Coulman D., Behm R., Ertl G: Phys. Rev. Lett.,1989, 63, 1086. https://doi.org/10.1103/PhysRevLett.63.1086
dc.relation.referencesen[6] Krischer K., EiswirthM., Ertl G., J. Chem. Phys., 1992, 96,9161. https://doi.org/10.1063/1.462226
dc.relation.referencesen[7] Bzovska I., Mryglod I., Condens. Matter. Phys., 2010, 13,34801. https://doi.org/10.5488/CMP.13.34801
dc.relation.referencesen[8] Kostrobij P., Ryzha I.:Math. Model.Comput., 2016, 3, 146.https://doi.org/10.23939/mmc2016.02.146
dc.relation.referencesen[9] Gasser R., Smith. E., Phys. Lett., 1967, 1, 457.
dc.relation.referencesen[10] BertramM., Mikhailov A., Phys. Rev. E., 2003, 67, 036207.https://doi.org/10.1103/PhysRevE.67.036207
dc.relation.referencesen[11] Cisternas Y., Holmes P., Kevrekidis I., Li X., J. Chem. Phys.,2003, 118, 3312. https://doi.org/10.1063/1.1531070
dc.relation.referencesen[12] Connors K., Chemical Kinetics. The Study of Reaction Rates in Solution. VCH Publishers, New York 1990.
dc.relation.referencesen[13] Kostrobiy P., Markovych B., Suchorski Y., Solid State Phenom., 2007, 128, 219.https://doi.org/10.4028/www.scientific.net/SSP.128.219
dc.relation.referencesen[14] Holst B., Piskur J., Kostrobiy P. et al., Ultramicroscopy, 2009,109, 413. https://doi.org/10.1016/j.ultramic.2008.11.021
dc.relation.referencesen[15] Suchorski Y., private communication.
dc.relation.referencesen[16] Bzovska I., Mryglod I., Ukr. Phys. J., 2016, 61, 140.https://doi.org/10.15407/ujpe61.02.0134
dc.relation.referencesen[17] EiswirthM., Krischer K., Ertl G., Appl. Phys. A., 1990, 51, 79.https://doi.org/10.1007/BF00324269
dc.relation.urihttps://doi.org/10.1063/1.1458938
dc.relation.urihttps://doi.org/10.1016/0039-6028(77)90456-3
dc.relation.urihttps://doi.org/10.1088/0034-4885/53/7/002
dc.relation.urihttps://doi.org/10.1103/PhysRevLett.55.2168
dc.relation.urihttps://doi.org/10.1103/PhysRevLett.63.1086
dc.relation.urihttps://doi.org/10.1063/1.462226
dc.relation.urihttps://doi.org/10.5488/CMP.13.34801
dc.relation.urihttps://doi.org/10.23939/mmc2016.02.146
dc.relation.urihttps://doi.org/10.1103/PhysRevE.67.036207
dc.relation.urihttps://doi.org/10.1063/1.1531070
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/SSP.128.219
dc.relation.urihttps://doi.org/10.1016/j.ultramic.2008.11.021
dc.relation.urihttps://doi.org/10.15407/ujpe61.02.0134
dc.relation.urihttps://doi.org/10.1007/BF00324269
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder©Kostrobii P., Ryzha I., 2019
dc.subjectкаталітична реакція окиснення
dc.subjectреак- ційно-дифузійна модель
dc.subjectматематичне моделювання реакційно- дифузійних процесів
dc.subjectreaction of catalytic oxidation
dc.subjectreactiondiffusion model
dc.subjectmathematical modeling of reactiondiffusion processes
dc.titleTwo-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface
dc.title.alternativeДвовимірна математична модель процесу оксидації карбон (ІІ) оксиду на поверхні платинового каталізатора
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018v12n4_Kostrobii_P-Two_dimensional_mathematical_451-455.pdf
Size:
254.75 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018v12n4_Kostrobii_P-Two_dimensional_mathematical_451-455__COVER.png
Size:
474.98 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: