Salicylaldehydes Derived from 5-Chloromethyl-2-hydroxybenzaldehyde – Synthesis and Reactions

dc.citation.epage541
dc.citation.issue3
dc.citation.spage532
dc.contributor.affiliationPetru Poni Institute of Macromolecular Chemistry
dc.contributor.authorRoman, Gheorghe
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:08Z
dc.date.available2024-02-12T08:52:08Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСинтезовано ряд саліцилових альдегідів заміщенням хорошої відхідної групи – атома хлору – у 2 гідрокси-5-хлорометилбензальдегіді різними O-, S- або N-нуклеофілами. Досліджено участь деяких із цих саліцилових альдегідів у синтезі гетероциклів, таких як бензофуран або кумарин, а також застосування їх як субстрату в реакції Петасіса бороно-Манніха.
dc.description.abstractA series of salicylaldehydes have been prepared through the replacement of the easily leaving chlorine atom in 5-chloromethyl-2-hydroxybenzaldehyde with various O-, S- or N-nucleophiles. The involvement of a few of these salicylaldehydes in the synthesis of heterocycles such as benzofuran or coumarin, or as substrate in the Petasis borono-Mannich reaction has been explored.
dc.format.extent532-541
dc.format.pages10
dc.identifier.citationRoman G. Salicylaldehydes Derived from 5-Chloromethyl-2-hydroxybenzaldehyde – Synthesis and Reactions / Gheorghe Roman // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 532–541.
dc.identifier.citationenRoman G. Salicylaldehydes Derived from 5-Chloromethyl-2-hydroxybenzaldehyde – Synthesis and Reactions / Gheorghe Roman // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 532–541.
dc.identifier.doidoi.org/10.23939/chcht17.03.532
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61284
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Masesane, I.B.; Desta, Z.Y. Reactions of Salicylaldehyde and Enolates or Their Equivalents: Versatile Synthetic Routes to Chro-mane Derivatives. Beilstein J. Org. Chem. 2012, 8, 2166-2175. https://doi.org/10.3762/bjoc.8.244
dc.relation.references[2] Sebastian, A.; Srinivasulu, V.; Abu-Yousef, I.A.; Gorka, O.; Al-Tel, T.H. Domino Transformations of Ene/Yne Tethered Salicy-laldehyde Derivatives: Pluripotent Platforms for the Construction of High sp3 Content and Privileged Architectures. Chem. – Eur. J. 2019, 25, 15710-15735. https://doi.org/10.1002/chem.201902596
dc.relation.references[3] Sheykhi, S.; Pedrood, K.; Amanlou, M.; Larijani, B.; Mahdavi, M. Synthesis of Chromene-Fused Heterocycles by the Intramolecular–Diels–Alder Reaction: An Overview. Tetrahedron 2021, 102, 132524. https://doi.org/10.1016/j.tet.2021.132524
dc.relation.references[4] Koca, M.; Ertürk, A.S.; Bozca, O. Rap-Stoermer Reaction: TEA Catalyzed One-Pot Efficient Synthesis of Benzofurans and Optimization of Different Reaction Conditions. ChemistrySelect 2022, 7, e202202243. https://doi.org/10.1002/slct.202202243
dc.relation.references[5] Phan, P.-T.T.; Nguyen, T.-T.T.; Nguyen, H.-N.T.; Le, B.-K.N.; Vu, T.T.; Tran, D.C.; Pham, T.-A.N. Synthesis and Bioactivity Evaluation of Novel 2-Salicyloylbenzofurans as Antibacterial Agents. Molecules 2017, 22, 687. https://doi.org/10.3390/molecules22050687
dc.relation.references[6] Zhang, H.; Yan, Y.; Li, Y.; Gao, W. A Facile Synthesis of Novel Benzofuran-2-yl(9-methyl-9H-carbazol-3-yl)methanones. Res. Chem. Intermed. 2012, 38, 1909-1919. https://doi.org/10.1007/s11164-012-0513-1
dc.relation.references[7] Dale, T.J.; Sather, A.C.; Rebek Jr., J. Synthesis of Novel Aryl-1,2-oxazoles from ortho-Hydroxyaryloximes. Tetrahedron Lett. 2009, 50, 6173-6175. https://doi.org/10.1016/j.tetlet.2009.08.086
dc.relation.references[8] Kalkhambkar, R.G.; Yuvaraj, H. Triflic Anhydride: A Mild Reagent for Highly Efficient Synthesis of 1,2-Benzisoxazoles, Isoxazolo, and Isothiazolo Quinolines Without Additive or Base. Synth. Commun. 2014, 44, 547-555. https://doi.org/10.1080/00397911.2013.821617
dc.relation.references[9] Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N. A Novel Method for the Highly Efficient Synthesis of 1,2-Benzisoxazoles under Neutral Conditions Using the Ph3P/DDQ System. Tetrahedron Lett. 2006, 47, 8247-8250. https://doi.org/10.1016/j.tetlet.2006.09.120
dc.relation.references[10] Tkachenko, V.V.; Muravyova, E.A.; Desenko, S.M.; Shishkin, O.V.; Shishkina, S.V.; Sysoiev, D.O.; Müller T.J.J.; Chebanov, V.A. The Unexpected Influence of Aryl Substituents in N-Aryl-3-Oxobutanamides on the Behavior of Their Multicomponent Reactions with 5-Amino-3-Methylisoxazole and Salicylaldehyde. Beilstein J. Org. Chem. 2014, 10, 3019-3030. https://doi.org/10.3762/bjoc.10.320
dc.relation.references[11] Voskressensky, L.G.; Festa, A.A.; Varlamov, A.V. Domino Reactions Based on Knoevenagel Condensation in the Synthesis of Heterocyclic Compounds. Recent Advances. Tetrahedron 2014, 70, 551-572. https://doi.org/10.1016/j.tet.2013.11.011
dc.relation.references[12] Wu, P.; Givskov, M.; Nielsen, T.E. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem. Rev. 2019, 119, 11245-11290. https://doi.org/10.1021/acs.chemrev.9b00214
dc.relation.references[13] Candeias, N.R.; Montalbano, F.; Cal, P.M.S.D.; Gois, P.M.P. Boronic Acids and Esters in the Petasis-Borono Mannich Multi-component Reaction. Chem. Rev. 2010, 110, 6169–6193. https://doi.org/10.1021/cr100108k
dc.relation.references[14] Andruh, M. The Exceptionally Rich Coordination Chemistry Generated by Schiff-Base Ligands Derived from o-Vanillin. Dalton Trans. 2015, 44, 16633-16653. https://doi.org/10.1039/c5dt02661j
dc.relation.references[15] Mazzoni, R.; Roncaglia, F.; Rigamonti, L. When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetra-dentate Salen-Type Schiff Base Ligands and Related Complexes. Crystals 2021, 11, 483. https://doi.org/10.3390/cryst11050483
dc.relation.references[16] Enyedy, É.A.; Petrasheuskaya, T.V.; Kiss, M.A.; Wernitznig, D.; Wenisch, D.; Keppler, B.K.; Spengler, G.; May, N.V.; Frank, É.; Dömötör, O. Complex Formation of an Estrone-Salicylaldehyde Semicarbazone Hybrid with Copper(II) and Gallium(III): Solution Equilibria and Biological Activity. J. Inorg. Biochem. 2021, 220, 111468. https://doi.org/10.1016/j.jinorgbio.2021.111468
dc.relation.references[17] Sako, M.; Takizawa, S.; Sasai, H. Chiral Vanadium Complex-Catalyzed Oxidative Coupling of Arenols. Tetrahedron 2020, 76, 131645. https://doi.org/10.1016/j.tet.2020.131645
dc.relation.references[18] Berhanu, A.L.; Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K.-H. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC – Trends Anal. Chem. 2019, 116, 74-91. https://doi.org/10.1016/j.trac.2019.04.025
dc.relation.references[19] Zhong, T.; Jiang, N.; Li, C.; Wang, G. A Highly Selective Fluorescence and Absorption Sensor for Rapid Recognition and Detection of Cu2+ Ions in Aqueous Solution and Film. Lumines-cence 2022, 37, 391-398. https://doi.org/10.1002/bio.4180
dc.relation.references[20] Ganesan, G.; Pownthurai, B.; Kotwal, N.K.; Yadav, M.; Chetti, P.; Chaskar, A. Function-Oriented Synthesis of Fluorescent Chemosensor for Selective Detection of Al3+ in Neat Aqueous Solution: Paperstrip Detection & DNA Bioimaging. J. Photochem. Photobiol. A Chem. 2022, 425, 113699. https://doi.org/10.1016/j.jphotochem.2021.113699
dc.relation.references[21] Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Pt(II) and Au(III) Complexes Containing Schiff-base Ligands: A Promising Source for Antitumor Treatment. Eur. J. Med. Chem. 2021, 211, 113098. https://doi.org/10.1016/j.ejmech.2020.113098
dc.relation.references[22] Tanaka, T.; Tsurutani, K.; Komatsu, A.; Ito, T.; Iida, K.; Fujii, Y.; Nakano, Y.; Usui, Y.; Fukuda, Y.; Chikira, M. Synthesis of New Cationic Schiff Base Complexes of Copper(II) and Their Selective Binding with DNA. Bull. Chem. Soc. Jpn. 1997, 70, 615-629. https://doi.org/10.1246/bcsj.70.615
dc.relation.references[23] Chew, S.T.; Lo, K.M.; Lee, S.K.; Heng, M.P.; Teoh, W.Y.; Sim, K.S.; Tan, K.W. Copper Complexes with Phosphonium Con-taining Hydrazone Ligand: Topoisomerase Inhibition and Cytotox-icity Study. Eur. J. Med. Chem. 2014, 76, 397-407. https://doi.org/10.1016/j.ejmech.2014.02.049
dc.relation.references[24] Akkoç, S.; Kayser, V.; İlhan, İ.Ö. Synthesis and in vitro Anti-cancer Evaluation of Some Benzimidazolium Salts. J. Heterocycl. Chem. 2019, 56, 2934-2944. https://doi.org/10.1002/jhet.3687
dc.relation.references[25] Kadwa, E.; Friedrich, H.B.; Bala, M.D. Structural Identifica-tion of Products from the Chloromethylation of Salicylaldehyde. Synlett 2019, 30, 44-48. https://doi.org/10.1055/s-0037-1610334
dc.relation.references[26] Shaker, M.; Beni, A.S. Cu@SB-MCM-41 Composite as an Efficient and Recyclable Nanocatalyst for the Synthesis of Polyhy-droquinoline Derivatives via Unsymmetrical Hantzsch Reaction. J. Porous Mater. 2021, 28, 435-449. https://doi.org/10.1007/s10934-020-01006-8
dc.relation.references[27] Sanad, S.M.H.; Mekky, A.E.M. Efficient Synthesis and Characterization of Novel bis-Heterocyclic Derivatives and Benzo-Fused Macrocycles Containing Oxazolone or Imidazolone Subunits. J. Hete¬rocycl. Chem. 2020, 57, 3930-3942. https://doi.org/10.1002/jhet.4102
dc.relation.references[28] Stoermer, R.; Behn, K. Synthese Aromatischer Alkohole mit Formaldehyd. Ber. Dtsch. Chem. Ges. 1902, 34, 2455-2460. https://doi.org/10.1002/cber.190103402188
dc.relation.references[29] Angyal, S.J.; Morris, P.J.; Tetaz, J.R.; Wilson, J.G. The Sommelet Reaction. Part III. The Choice of Solvent and the Effect of Substituents. J. Chem. Soc. 1950, 1950, 2141-2145. https://doi.org/10.1039/JR9500002141
dc.relation.references[30] Wei, Z.; Bi, H.; Liu, Y.; Nie, H.; Yao, L.; Wang, S.; Yang, J.; Wang, Y.; Liu, X.; Zheng, Z. Design, Synthesis and Evaluation of New Classes of Nonquaternary Reactivators for Acetylcholineste-rase Inhibited by Organophosphates. Bioorg. Chem. 2018, 81, 681-688. https://doi.org/10.1016/j.bioorg.2018.09.025
dc.relation.references[31] Elshaarawy, R.F.M.; Mostafa, T.B.; Refaee, A.A.; El-Sawi, E.A. Ionic Sal-SG Schiff Bases as New Synergetic Chemotherapeutic Candidates: Synthesis, Metalation with Pd(II) and in vitro Pharmacological Evaluation. RSC Adv. 2015, 5, 68260-68269. https://doi.org/10.1039/C5RA11083A
dc.relation.references[32] Ghamari Kargar, P.; Noorian, M.; Chamani, E.; Bagherzade, G.; Kiani, Z. Synthesis, Characterization and Cytotoxicity Evalua-tion of a Novel Magnetic Nanocomposite with Iron Oxide Depo-sited on Cellulose Nanofibers with Nickel (Fe3O4@NFC@ONSM-Ni). RSC Adv. 2021, 11, 17413-17430. https://doi.org/10.1039/D1RA01256H
dc.relation.references[33] Dalla Cort, A.; Mandolini, L.; Pasquini, C.; Schiaffino, L. A Novel Ditopic Zinc-Salophen Macrocycle: A Potential Two-Stationed Wheel for [2]-Pseudorotaxanes. Org. Biomol. Chem. 2006, 4, 4543-4546. https://doi.org/10.1039/B613705A
dc.relation.references[34] Forte, G.; Maglione, M.S.; Tulli, L.G.; Fantoni, A.; Dalla Cort, A. A Newly Designed Water Soluble Uranyl-Salophen Complex for Anion Recognition. ChemistryOpen 2021, 10, 848-851. https://doi.org/10.1002/open.202100182
dc.relation.references[35] Ho, C.-Y. Cyanative Alkene–Aldehyde Coupling: Ni(0)–NHC–Et2AlCN Mediated Chromanols Synthesis with High cis-Selectivity at Room Temperature. Chem. Commun. 2010, 46, 466-468. https://doi.org/10.1039/B918626C
dc.relation.references[36] Kazemnejadi, M.; Shakeri, A.; Mohammadi, M.; Tabefam, M. Direct Preparation of Oximes and Schiff Bases by Oxidation of Primary Benzylic or Allylic Alcohols in the Presence of Primary Amines Using Mn(III) Complex of Polysalicylaldehyde as an Efficient and Selective Heterogeneous Catalyst by Molecular Oxygen. J. Iran. Chem. Soc. 2017, 14, 1917-1933. https://doi.org/10.1007/s13738-017-1131-z
dc.relation.references[37] Coppola, G. M. Amberlyst-15, a Superior Acid Catalyst for the Cleavage of Acetals. Synthesis 1984, 1984, 1021-1023. https://doi.org/10.1055/s-1984-31059
dc.relation.references[38] Meléndez, J.; North, M.; Villuendas, P. One-Component Catalysts for Cyclic Carbonate Synthesis. Chem. Commun. 2009, 2009, 2577-2579. https://doi.org/10.1039/B900180H
dc.relation.references[39] Wei, X.; Li, J.; Zhou, B.; Qin, S. Synthesis, Oxygenation and Catalytic Epoxidation Performance of Salen and Salophen Transi-tion-Metal Complexes with Aza-Crown or Morpholino Pendants. Transition Met. Chem. 2004, 29, 457-462. https://doi.org/10.1023/B:TMCH.0000027463.00158.6b
dc.relation.references[40] Bagherzadeh, M.; Zare, M. Synthesis, Characterization and Catalysis of Recyclable New Piperazine-Bridged Mo(VI) Polymers [MoO2(Salen) (Piperazine)]n in Highly Selective Oxygenation of Alkenes and Sulfides. J. Coord. Chem. 2013, 66, 2885-2900. https://doi.org/10.1080/00958972.2013.818671
dc.relation.references[41] Docherty, K.M.; Kulpa, Jr., C.F. Toxicity and Antimicrobial Activity of Imidazolium and Pyridinium Ionic Liquids. Green Chem. 2005, 7, 185-189. https://doi.org/10.1039/B419172B
dc.relation.references[42] Modak, R.; Mondal, B.; Howlader, P.; Mukherjee, P.S. Self-Assembly of a "Cationic-Cage": Via the Formation of Ag-Carbene Bonds Followed by Imine Condensation. Chem. Commun. 2019, 55, 6711-6714. https://doi.org/10.1039/C9CC02341K
dc.relation.references[43] Boldescu, V.; Sucman, N.; Hassan, S.; Iqbal, J.; Neamtu, M.; Lecka, J.; Sévigny, J.; Prodius, D.; Macaev, F. Ectonucleotidase Inhibitory and Redox Activity of Imidazole-Based Organic Salts and Ionic Liquids. ChemMedChem, 2018, 13, 2297-2304. https://doi.org/10.1002/cmdc.201800520
dc.relation.references[44] Lecarme, L.; Prado, E.; De Rache, A.; Nicolau-Travers, M.-L.; Bonnet, R.; van der Heyden, A.; Philouze, C.; Gomez, D.; Mergny, J.-L.; Jamet, H.; et al. Interaction of Polycationic Ni(II)-Salophen Complexes with G-Quadruplex DNA. Inorg. Chem. 2014, 53, 12519-12531. https://doi.org/10.1021/ic502063r
dc.relation.references[45] Elshaarawy, R.F.M.; Tadros, H.R.Z.; Abd El-Aal, R.M.; Mustafa, F.H.A.; Soliman, Y.A.; Hamed, M.A. Hybrid Molecules Comprising 1,2,4-Triazole or Diaminothiadiazole Schiff-Bases and Ionic Liquid Moieties as Potent Antibacterial and Marine Antibio-fouling Nominees. J. Environ. Chem. Eng. 2016, 4, 2754-2764. https://doi.org/10.1016/j.jece.2016.05.016
dc.relation.references[46] Neto, Í.; Andrade, J.; Fernandes, A.S.; Pinto Reis, C.; Salunke, J.K.; Priimagi, A.; Candeias, N.R.; Rijo, P. Multicomponent Petasis-Borono Mannich Preparation of Alkylaminophenols and Antimicrobial Activity Studies. ChemMedChem 2016, 11, 2015-2023. https://doi.org/10.1002/cmdc.201600244
dc.relation.references[47] Doan, P.; Karjalainen, A.; Chandraseelan, J.G.; Sandberg, O.; Yli-Harja, O.; Rosholm, T.; Franzen, R.; Kandhavelu, M. Synthesis and Biological Screening for Cytotoxic Activity of N-Substituted Indolines and Morpholines. Eur. J. Med. Chem. 2016, 120, 296-303. https://doi.org/10.1016/j.ejmech.2016.05.024
dc.relation.references[48] Wang, Q.; Finn, M. G. 2H-Chromenes from Salicylaldehydes by a Catalytic Petasis Reaction. Org. Lett. 2000, 2, 4063-4065. https://doi.org/10.1021/ol006710r
dc.relation.references[49] Paizs, C.; Toşa, M.; Majdik, C.; Moldovan, P.; Novák, L.; Kolonits, P.; Marcovici, A.; Irimie, F.-D.; Poppe, L. Optically Active 1-(Benzofuran-2-yl)ethanols and Ethane-1,2-diols by Enantiotopic Selective Bioreductions. Tetrahedron Asymmetry 2003, 14, 1495-1501. https://doi.org/10.1016/S0957-4166(03)00222-2
dc.relation.references[50] Alizadeh, A.; Ghanbaripour, R. An Efficient Synthesis of Pyrrolo[2,1-a]isoquinoline Derivatives Containing Coumarin Skeletons via a One-Pot, Three-Component Reaction. Res. Chem. Intermed. 2015, 41, 8785-8796. https://doi.org/10.1007/s11164-015-1928-2
dc.relation.references[51] Villa-Martínez, C.A.; Magaña-Vergara, N.E.; Rodríguez, M.; Mojica-Sánchez, J.P.; Ramos-Organillo, Á.A.; Barroso-Flores, J.; Padilla-Martinez, I.I.; Martínez-Martínez, F.J. Synthesis, Optical Characterization in Solution and Solid-State, and DFT Calculations of 3-Acetyl and 3-(1′-(2′-Phenylhydrazono)ethyl)-coumarin-(7)-substituted Derivatives. Molecules 2022, 27, 3677. https://doi.org/10.3390/molecules27123677
dc.relation.referencesen[1] Masesane, I.B.; Desta, Z.Y. Reactions of Salicylaldehyde and Enolates or Their Equivalents: Versatile Synthetic Routes to Chro-mane Derivatives. Beilstein J. Org. Chem. 2012, 8, 2166-2175. https://doi.org/10.3762/bjoc.8.244
dc.relation.referencesen[2] Sebastian, A.; Srinivasulu, V.; Abu-Yousef, I.A.; Gorka, O.; Al-Tel, T.H. Domino Transformations of Ene/Yne Tethered Salicy-laldehyde Derivatives: Pluripotent Platforms for the Construction of High sp3 Content and Privileged Architectures. Chem, Eur. J. 2019, 25, 15710-15735. https://doi.org/10.1002/chem.201902596
dc.relation.referencesen[3] Sheykhi, S.; Pedrood, K.; Amanlou, M.; Larijani, B.; Mahdavi, M. Synthesis of Chromene-Fused Heterocycles by the Intramolecular–Diels–Alder Reaction: An Overview. Tetrahedron 2021, 102, 132524. https://doi.org/10.1016/j.tet.2021.132524
dc.relation.referencesen[4] Koca, M.; Ertürk, A.S.; Bozca, O. Rap-Stoermer Reaction: TEA Catalyzed One-Pot Efficient Synthesis of Benzofurans and Optimization of Different Reaction Conditions. ChemistrySelect 2022, 7, e202202243. https://doi.org/10.1002/slct.202202243
dc.relation.referencesen[5] Phan, P.-T.T.; Nguyen, T.-T.T.; Nguyen, H.-N.T.; Le, B.-K.N.; Vu, T.T.; Tran, D.C.; Pham, T.-A.N. Synthesis and Bioactivity Evaluation of Novel 2-Salicyloylbenzofurans as Antibacterial Agents. Molecules 2017, 22, 687. https://doi.org/10.3390/molecules22050687
dc.relation.referencesen[6] Zhang, H.; Yan, Y.; Li, Y.; Gao, W. A Facile Synthesis of Novel Benzofuran-2-yl(9-methyl-9H-carbazol-3-yl)methanones. Res. Chem. Intermed. 2012, 38, 1909-1919. https://doi.org/10.1007/s11164-012-0513-1
dc.relation.referencesen[7] Dale, T.J.; Sather, A.C.; Rebek Jr., J. Synthesis of Novel Aryl-1,2-oxazoles from ortho-Hydroxyaryloximes. Tetrahedron Lett. 2009, 50, 6173-6175. https://doi.org/10.1016/j.tetlet.2009.08.086
dc.relation.referencesen[8] Kalkhambkar, R.G.; Yuvaraj, H. Triflic Anhydride: A Mild Reagent for Highly Efficient Synthesis of 1,2-Benzisoxazoles, Isoxazolo, and Isothiazolo Quinolines Without Additive or Base. Synth. Commun. 2014, 44, 547-555. https://doi.org/10.1080/00397911.2013.821617
dc.relation.referencesen[9] Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N. A Novel Method for the Highly Efficient Synthesis of 1,2-Benzisoxazoles under Neutral Conditions Using the Ph3P/DDQ System. Tetrahedron Lett. 2006, 47, 8247-8250. https://doi.org/10.1016/j.tetlet.2006.09.120
dc.relation.referencesen[10] Tkachenko, V.V.; Muravyova, E.A.; Desenko, S.M.; Shishkin, O.V.; Shishkina, S.V.; Sysoiev, D.O.; Müller T.J.J.; Chebanov, V.A. The Unexpected Influence of Aryl Substituents in N-Aryl-3-Oxobutanamides on the Behavior of Their Multicomponent Reactions with 5-Amino-3-Methylisoxazole and Salicylaldehyde. Beilstein J. Org. Chem. 2014, 10, 3019-3030. https://doi.org/10.3762/bjoc.10.320
dc.relation.referencesen[11] Voskressensky, L.G.; Festa, A.A.; Varlamov, A.V. Domino Reactions Based on Knoevenagel Condensation in the Synthesis of Heterocyclic Compounds. Recent Advances. Tetrahedron 2014, 70, 551-572. https://doi.org/10.1016/j.tet.2013.11.011
dc.relation.referencesen[12] Wu, P.; Givskov, M.; Nielsen, T.E. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem. Rev. 2019, 119, 11245-11290. https://doi.org/10.1021/acs.chemrev.9b00214
dc.relation.referencesen[13] Candeias, N.R.; Montalbano, F.; Cal, P.M.S.D.; Gois, P.M.P. Boronic Acids and Esters in the Petasis-Borono Mannich Multi-component Reaction. Chem. Rev. 2010, 110, 6169–6193. https://doi.org/10.1021/cr100108k
dc.relation.referencesen[14] Andruh, M. The Exceptionally Rich Coordination Chemistry Generated by Schiff-Base Ligands Derived from o-Vanillin. Dalton Trans. 2015, 44, 16633-16653. https://doi.org/10.1039/P.5dt02661j
dc.relation.referencesen[15] Mazzoni, R.; Roncaglia, F.; Rigamonti, L. When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetra-dentate Salen-Type Schiff Base Ligands and Related Complexes. Crystals 2021, 11, 483. https://doi.org/10.3390/cryst11050483
dc.relation.referencesen[16] Enyedy, É.A.; Petrasheuskaya, T.V.; Kiss, M.A.; Wernitznig, D.; Wenisch, D.; Keppler, B.K.; Spengler, G.; May, N.V.; Frank, É.; Dömötör, O. Complex Formation of an Estrone-Salicylaldehyde Semicarbazone Hybrid with Copper(II) and Gallium(III): Solution Equilibria and Biological Activity. J. Inorg. Biochem. 2021, 220, 111468. https://doi.org/10.1016/j.jinorgbio.2021.111468
dc.relation.referencesen[17] Sako, M.; Takizawa, S.; Sasai, H. Chiral Vanadium Complex-Catalyzed Oxidative Coupling of Arenols. Tetrahedron 2020, 76, 131645. https://doi.org/10.1016/j.tet.2020.131645
dc.relation.referencesen[18] Berhanu, A.L.; Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K.-H. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC – Trends Anal. Chem. 2019, 116, 74-91. https://doi.org/10.1016/j.trac.2019.04.025
dc.relation.referencesen[19] Zhong, T.; Jiang, N.; Li, C.; Wang, G. A Highly Selective Fluorescence and Absorption Sensor for Rapid Recognition and Detection of Cu2+ Ions in Aqueous Solution and Film. Lumines-cence 2022, 37, 391-398. https://doi.org/10.1002/bio.4180
dc.relation.referencesen[20] Ganesan, G.; Pownthurai, B.; Kotwal, N.K.; Yadav, M.; Chetti, P.; Chaskar, A. Function-Oriented Synthesis of Fluorescent Chemosensor for Selective Detection of Al3+ in Neat Aqueous Solution: Paperstrip Detection & DNA Bioimaging. J. Photochem. Photobiol. A Chem. 2022, 425, 113699. https://doi.org/10.1016/j.jphotochem.2021.113699
dc.relation.referencesen[21] Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Pt(II) and Au(III) Complexes Containing Schiff-base Ligands: A Promising Source for Antitumor Treatment. Eur. J. Med. Chem. 2021, 211, 113098. https://doi.org/10.1016/j.ejmech.2020.113098
dc.relation.referencesen[22] Tanaka, T.; Tsurutani, K.; Komatsu, A.; Ito, T.; Iida, K.; Fujii, Y.; Nakano, Y.; Usui, Y.; Fukuda, Y.; Chikira, M. Synthesis of New Cationic Schiff Base Complexes of Copper(II) and Their Selective Binding with DNA. Bull. Chem. Soc. Jpn. 1997, 70, 615-629. https://doi.org/10.1246/bcsj.70.615
dc.relation.referencesen[23] Chew, S.T.; Lo, K.M.; Lee, S.K.; Heng, M.P.; Teoh, W.Y.; Sim, K.S.; Tan, K.W. Copper Complexes with Phosphonium Con-taining Hydrazone Ligand: Topoisomerase Inhibition and Cytotox-icity Study. Eur. J. Med. Chem. 2014, 76, 397-407. https://doi.org/10.1016/j.ejmech.2014.02.049
dc.relation.referencesen[24] Akkoç, S.; Kayser, V.; İlhan, İ.Ö. Synthesis and in vitro Anti-cancer Evaluation of Some Benzimidazolium Salts. J. Heterocycl. Chem. 2019, 56, 2934-2944. https://doi.org/10.1002/jhet.3687
dc.relation.referencesen[25] Kadwa, E.; Friedrich, H.B.; Bala, M.D. Structural Identifica-tion of Products from the Chloromethylation of Salicylaldehyde. Synlett 2019, 30, 44-48. https://doi.org/10.1055/s-0037-1610334
dc.relation.referencesen[26] Shaker, M.; Beni, A.S. Cu@SB-MCM-41 Composite as an Efficient and Recyclable Nanocatalyst for the Synthesis of Polyhy-droquinoline Derivatives via Unsymmetrical Hantzsch Reaction. J. Porous Mater. 2021, 28, 435-449. https://doi.org/10.1007/s10934-020-01006-8
dc.relation.referencesen[27] Sanad, S.M.H.; Mekky, A.E.M. Efficient Synthesis and Characterization of Novel bis-Heterocyclic Derivatives and Benzo-Fused Macrocycles Containing Oxazolone or Imidazolone Subunits. J. Hete¬rocycl. Chem. 2020, 57, 3930-3942. https://doi.org/10.1002/jhet.4102
dc.relation.referencesen[28] Stoermer, R.; Behn, K. Synthese Aromatischer Alkohole mit Formaldehyd. Ber. Dtsch. Chem. Ges. 1902, 34, 2455-2460. https://doi.org/10.1002/cber.190103402188
dc.relation.referencesen[29] Angyal, S.J.; Morris, P.J.; Tetaz, J.R.; Wilson, J.G. The Sommelet Reaction. Part III. The Choice of Solvent and the Effect of Substituents. J. Chem. Soc. 1950, 1950, 2141-2145. https://doi.org/10.1039/JR9500002141
dc.relation.referencesen[30] Wei, Z.; Bi, H.; Liu, Y.; Nie, H.; Yao, L.; Wang, S.; Yang, J.; Wang, Y.; Liu, X.; Zheng, Z. Design, Synthesis and Evaluation of New Classes of Nonquaternary Reactivators for Acetylcholineste-rase Inhibited by Organophosphates. Bioorg. Chem. 2018, 81, 681-688. https://doi.org/10.1016/j.bioorg.2018.09.025
dc.relation.referencesen[31] Elshaarawy, R.F.M.; Mostafa, T.B.; Refaee, A.A.; El-Sawi, E.A. Ionic Sal-SG Schiff Bases as New Synergetic Chemotherapeutic Candidates: Synthesis, Metalation with Pd(II) and in vitro Pharmacological Evaluation. RSC Adv. 2015, 5, 68260-68269. https://doi.org/10.1039/P.5RA11083A
dc.relation.referencesen[32] Ghamari Kargar, P.; Noorian, M.; Chamani, E.; Bagherzade, G.; Kiani, Z. Synthesis, Characterization and Cytotoxicity Evalua-tion of a Novel Magnetic Nanocomposite with Iron Oxide Depo-sited on Cellulose Nanofibers with Nickel (Fe3O4@NFC@ONSM-Ni). RSC Adv. 2021, 11, 17413-17430. https://doi.org/10.1039/D1RA01256H
dc.relation.referencesen[33] Dalla Cort, A.; Mandolini, L.; Pasquini, C.; Schiaffino, L. A Novel Ditopic Zinc-Salophen Macrocycle: A Potential Two-Stationed Wheel for [2]-Pseudorotaxanes. Org. Biomol. Chem. 2006, 4, 4543-4546. https://doi.org/10.1039/B613705A
dc.relation.referencesen[34] Forte, G.; Maglione, M.S.; Tulli, L.G.; Fantoni, A.; Dalla Cort, A. A Newly Designed Water Soluble Uranyl-Salophen Complex for Anion Recognition. ChemistryOpen 2021, 10, 848-851. https://doi.org/10.1002/open.202100182
dc.relation.referencesen[35] Ho, C.-Y. Cyanative Alkene–Aldehyde Coupling: Ni(0)–NHC–Et2AlCN Mediated Chromanols Synthesis with High cis-Selectivity at Room Temperature. Chem. Commun. 2010, 46, 466-468. https://doi.org/10.1039/B918626C
dc.relation.referencesen[36] Kazemnejadi, M.; Shakeri, A.; Mohammadi, M.; Tabefam, M. Direct Preparation of Oximes and Schiff Bases by Oxidation of Primary Benzylic or Allylic Alcohols in the Presence of Primary Amines Using Mn(III) Complex of Polysalicylaldehyde as an Efficient and Selective Heterogeneous Catalyst by Molecular Oxygen. J. Iran. Chem. Soc. 2017, 14, 1917-1933. https://doi.org/10.1007/s13738-017-1131-z
dc.relation.referencesen[37] Coppola, G. M. Amberlyst-15, a Superior Acid Catalyst for the Cleavage of Acetals. Synthesis 1984, 1984, 1021-1023. https://doi.org/10.1055/s-1984-31059
dc.relation.referencesen[38] Meléndez, J.; North, M.; Villuendas, P. One-Component Catalysts for Cyclic Carbonate Synthesis. Chem. Commun. 2009, 2009, 2577-2579. https://doi.org/10.1039/B900180H
dc.relation.referencesen[39] Wei, X.; Li, J.; Zhou, B.; Qin, S. Synthesis, Oxygenation and Catalytic Epoxidation Performance of Salen and Salophen Transi-tion-Metal Complexes with Aza-Crown or Morpholino Pendants. Transition Met. Chem. 2004, 29, 457-462. https://doi.org/10.1023/B:TMCH.0000027463.00158.6b
dc.relation.referencesen[40] Bagherzadeh, M.; Zare, M. Synthesis, Characterization and Catalysis of Recyclable New Piperazine-Bridged Mo(VI) Polymers [MoO2(Salen) (Piperazine)]n in Highly Selective Oxygenation of Alkenes and Sulfides. J. Coord. Chem. 2013, 66, 2885-2900. https://doi.org/10.1080/00958972.2013.818671
dc.relation.referencesen[41] Docherty, K.M.; Kulpa, Jr., C.F. Toxicity and Antimicrobial Activity of Imidazolium and Pyridinium Ionic Liquids. Green Chem. 2005, 7, 185-189. https://doi.org/10.1039/B419172B
dc.relation.referencesen[42] Modak, R.; Mondal, B.; Howlader, P.; Mukherjee, P.S. Self-Assembly of a "Cationic-Cage": Via the Formation of Ag-Carbene Bonds Followed by Imine Condensation. Chem. Commun. 2019, 55, 6711-6714. https://doi.org/10.1039/P.9CC02341K
dc.relation.referencesen[43] Boldescu, V.; Sucman, N.; Hassan, S.; Iqbal, J.; Neamtu, M.; Lecka, J.; Sévigny, J.; Prodius, D.; Macaev, F. Ectonucleotidase Inhibitory and Redox Activity of Imidazole-Based Organic Salts and Ionic Liquids. ChemMedChem, 2018, 13, 2297-2304. https://doi.org/10.1002/cmdc.201800520
dc.relation.referencesen[44] Lecarme, L.; Prado, E.; De Rache, A.; Nicolau-Travers, M.-L.; Bonnet, R.; van der Heyden, A.; Philouze, C.; Gomez, D.; Mergny, J.-L.; Jamet, H.; et al. Interaction of Polycationic Ni(II)-Salophen Complexes with G-Quadruplex DNA. Inorg. Chem. 2014, 53, 12519-12531. https://doi.org/10.1021/ic502063r
dc.relation.referencesen[45] Elshaarawy, R.F.M.; Tadros, H.R.Z.; Abd El-Aal, R.M.; Mustafa, F.H.A.; Soliman, Y.A.; Hamed, M.A. Hybrid Molecules Comprising 1,2,4-Triazole or Diaminothiadiazole Schiff-Bases and Ionic Liquid Moieties as Potent Antibacterial and Marine Antibio-fouling Nominees. J. Environ. Chem. Eng. 2016, 4, 2754-2764. https://doi.org/10.1016/j.jece.2016.05.016
dc.relation.referencesen[46] Neto, Í.; Andrade, J.; Fernandes, A.S.; Pinto Reis, C.; Salunke, J.K.; Priimagi, A.; Candeias, N.R.; Rijo, P. Multicomponent Petasis-Borono Mannich Preparation of Alkylaminophenols and Antimicrobial Activity Studies. ChemMedChem 2016, 11, 2015-2023. https://doi.org/10.1002/cmdc.201600244
dc.relation.referencesen[47] Doan, P.; Karjalainen, A.; Chandraseelan, J.G.; Sandberg, O.; Yli-Harja, O.; Rosholm, T.; Franzen, R.; Kandhavelu, M. Synthesis and Biological Screening for Cytotoxic Activity of N-Substituted Indolines and Morpholines. Eur. J. Med. Chem. 2016, 120, 296-303. https://doi.org/10.1016/j.ejmech.2016.05.024
dc.relation.referencesen[48] Wang, Q.; Finn, M. G. 2H-Chromenes from Salicylaldehydes by a Catalytic Petasis Reaction. Org. Lett. 2000, 2, 4063-4065. https://doi.org/10.1021/ol006710r
dc.relation.referencesen[49] Paizs, C.; Toşa, M.; Majdik, C.; Moldovan, P.; Novák, L.; Kolonits, P.; Marcovici, A.; Irimie, F.-D.; Poppe, L. Optically Active 1-(Benzofuran-2-yl)ethanols and Ethane-1,2-diols by Enantiotopic Selective Bioreductions. Tetrahedron Asymmetry 2003, 14, 1495-1501. https://doi.org/10.1016/S0957-4166(03)00222-2
dc.relation.referencesen[50] Alizadeh, A.; Ghanbaripour, R. An Efficient Synthesis of Pyrrolo[2,1-a]isoquinoline Derivatives Containing Coumarin Skeletons via a One-Pot, Three-Component Reaction. Res. Chem. Intermed. 2015, 41, 8785-8796. https://doi.org/10.1007/s11164-015-1928-2
dc.relation.referencesen[51] Villa-Martínez, C.A.; Magaña-Vergara, N.E.; Rodríguez, M.; Mojica-Sánchez, J.P.; Ramos-Organillo, Á.A.; Barroso-Flores, J.; Padilla-Martinez, I.I.; Martínez-Martínez, F.J. Synthesis, Optical Characterization in Solution and Solid-State, and DFT Calculations of 3-Acetyl and 3-(1′-(2′-Phenylhydrazono)ethyl)-coumarin-(7)-substituted Derivatives. Molecules 2022, 27, 3677. https://doi.org/10.3390/molecules27123677
dc.relation.urihttps://doi.org/10.3762/bjoc.8.244
dc.relation.urihttps://doi.org/10.1002/chem.201902596
dc.relation.urihttps://doi.org/10.1016/j.tet.2021.132524
dc.relation.urihttps://doi.org/10.1002/slct.202202243
dc.relation.urihttps://doi.org/10.3390/molecules22050687
dc.relation.urihttps://doi.org/10.1007/s11164-012-0513-1
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2009.08.086
dc.relation.urihttps://doi.org/10.1080/00397911.2013.821617
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2006.09.120
dc.relation.urihttps://doi.org/10.3762/bjoc.10.320
dc.relation.urihttps://doi.org/10.1016/j.tet.2013.11.011
dc.relation.urihttps://doi.org/10.1021/acs.chemrev.9b00214
dc.relation.urihttps://doi.org/10.1021/cr100108k
dc.relation.urihttps://doi.org/10.1039/c5dt02661j
dc.relation.urihttps://doi.org/10.3390/cryst11050483
dc.relation.urihttps://doi.org/10.1016/j.jinorgbio.2021.111468
dc.relation.urihttps://doi.org/10.1016/j.tet.2020.131645
dc.relation.urihttps://doi.org/10.1016/j.trac.2019.04.025
dc.relation.urihttps://doi.org/10.1002/bio.4180
dc.relation.urihttps://doi.org/10.1016/j.jphotochem.2021.113699
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2020.113098
dc.relation.urihttps://doi.org/10.1246/bcsj.70.615
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2014.02.049
dc.relation.urihttps://doi.org/10.1002/jhet.3687
dc.relation.urihttps://doi.org/10.1055/s-0037-1610334
dc.relation.urihttps://doi.org/10.1007/s10934-020-01006-8
dc.relation.urihttps://doi.org/10.1002/jhet.4102
dc.relation.urihttps://doi.org/10.1002/cber.190103402188
dc.relation.urihttps://doi.org/10.1039/JR9500002141
dc.relation.urihttps://doi.org/10.1016/j.bioorg.2018.09.025
dc.relation.urihttps://doi.org/10.1039/C5RA11083A
dc.relation.urihttps://doi.org/10.1039/D1RA01256H
dc.relation.urihttps://doi.org/10.1039/B613705A
dc.relation.urihttps://doi.org/10.1002/open.202100182
dc.relation.urihttps://doi.org/10.1039/B918626C
dc.relation.urihttps://doi.org/10.1007/s13738-017-1131-z
dc.relation.urihttps://doi.org/10.1055/s-1984-31059
dc.relation.urihttps://doi.org/10.1039/B900180H
dc.relation.urihttps://doi.org/10.1023/B:TMCH.0000027463.00158.6b
dc.relation.urihttps://doi.org/10.1080/00958972.2013.818671
dc.relation.urihttps://doi.org/10.1039/B419172B
dc.relation.urihttps://doi.org/10.1039/C9CC02341K
dc.relation.urihttps://doi.org/10.1002/cmdc.201800520
dc.relation.urihttps://doi.org/10.1021/ic502063r
dc.relation.urihttps://doi.org/10.1016/j.jece.2016.05.016
dc.relation.urihttps://doi.org/10.1002/cmdc.201600244
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2016.05.024
dc.relation.urihttps://doi.org/10.1021/ol006710r
dc.relation.urihttps://doi.org/10.1016/S0957-4166(03)00222-2
dc.relation.urihttps://doi.org/10.1007/s11164-015-1928-2
dc.relation.urihttps://doi.org/10.3390/molecules27123677
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Roman G., 2023
dc.subject2-гідроксибензальдегіди
dc.subjectнуклеофільне заміщення
dc.subjectЯМР аналіз
dc.subjectсинтез гетероциклів
dc.subjectреакція Петасіса
dc.subject2-hydroxybenzaldehydes
dc.subjectnucleophilic substitution
dc.subjectNMR analysis
dc.subjectheterocyclic synthesis
dc.subjectPetasis reaction
dc.titleSalicylaldehydes Derived from 5-Chloromethyl-2-hydroxybenzaldehyde – Synthesis and Reactions
dc.title.alternativeСаліцилові альдегіди, отримані з 2-гідрокси-5-хлорометилбензальдегіду: синтез і реакції
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Roman_G-Salicylaldehydes_Derived_532-541.pdf
Size:
667.07 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Roman_G-Salicylaldehydes_Derived_532-541__COVER.png
Size:
556.6 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: