Improved Method for Determining Microbiological Contamination of Fatty Acid Methyl Esters and Blended Diesel Fuels

dc.citation.epage210
dc.citation.issue1
dc.citation.spage203
dc.contributor.affiliationSHEI Ukrainian State University of Chemical Technology
dc.contributor.authorPopytailenko, Daryna
dc.contributor.authorShevchenko, Olena
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:39Z
dc.date.available2024-02-09T10:29:39Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractРозглянуто процес деградації біодизельного палива рослинного походження (ріпакового і соняшникового) під впливом різних чинників. Проаналізовано методики визначення мікробіологічного забруднення речовин, визначено їхні основні переваги, недоліки і межі використання. На основі комбінації наявних методів розроблено методику якісного і кількісного визначення ступеня мікробіологічного (бактеріального і мікологічного) ураження палив. Встановлені кількісні та якісні характеристики мікробіологічного ураження традиційних і альтернативних дизельних палив. Ідентифіковані мікроорганізми, які є найактивнішими деструкторами біопалив.
dc.description.abstractThe process of degradation of biodiesel of vegetable origin (rapeseed and sunflower) under the influence of various factors is considered. Existing methods of determining microbiological contamination of substances are analyzed, their main advantages, disadvantages, and limits of use are determined. Based on the combination of existing methods, a method of qualitative and quantitative determination of the degree of microbiological (bacterial and mycological) damage to fuels has been developed. Quantitative and qualitative characteristics of microbiological damage to traditional and alternative diesel fuels have been established. The microorganisms that are the most active destructors of biofuels have been identified.
dc.format.extent203-210
dc.format.pages8
dc.identifier.citationPopytailenko D. Improved Method for Determining Microbiological Contamination of Fatty Acid Methyl Esters and Blended Diesel Fuels / Daryna Popytailenko, Olena Shevchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 203–210.
dc.identifier.citationenPopytailenko D. Improved Method for Determining Microbiological Contamination of Fatty Acid Methyl Esters and Blended Diesel Fuels / Daryna Popytailenko, Olena Shevchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 203–210.
dc.identifier.doidoi.org/10.23939/chcht17.01.203
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61222
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Patrylak, L.; Patrylak, K.; Okhrimenko, M.; Zubenko, S.; Levterov, A.; Savytskyi, V. Comparison of Power-Ecological Characteristics of Diesel Engine Work on Mixed Diesel Fuels on the Basis of Ethyl Esters of Rapeseed and Sunflower Oils. Chem. Chem. Technol. 2015, 9, 383−390. https://doi.org/10.23939/chcht09.03.383
dc.relation.references[2] Maymuchar; Wirahadi, D.; Faturrahman, N.A.; Febria, M.; Hanifuddin, M.; Aisyah, L.; Supriadi, F.; Bethari, S.A.; Karina, R.M.; Rulianto, D. et al. The Effect Characteristics Cetane Number of Commercial High-Speed Diesel Fuel-Biodiesel Palm Oil-Based Blends on CFR engine. IOP Conference Series: Earth and Envi-ronmental Science 2022, 1034, 012044. https://doi.org/10.1088/1755-1315/1034/1/012044
dc.relation.references[3] Wu, G.; Ge, J.C.; Choi, N.J. A Comprehensive Review of the Application Characteristics of Biodiesel Blends in Diesel Engines. Appl. Sci. 2020, 10, 8015. https://doi.org/10.3390/app10228015
dc.relation.references[4] Sorate, K.A.; Bhale, P.V. Biodiesel Properties and Automo-tive System Compatibility Issues. Renew. Sust. Energ. Rev. 2015, 41, 777−798. https://doi.org/10.1016/j.rser.2014.08.079
dc.relation.references[5] Passman, F.J. Microbial Contamination and its Control in Fuels and Fuel Systems Since 1980 – A Review. Int. Biodeterior. Biodegradation 2013, 81, 88-104. https://doi.org/10.1016/j.ibiod.2012.08.002
dc.relation.references[6] Matveeva, E.; Vasylchenko, A.; Demianko, D. Mikrobiolohi-cheskoe porazhenie aviatsionnykh topliv. Systemy ozbroiennia i viiskova tekhnikа 2011, 26, 152−156.
dc.relation.references[7] Shkilniuk, І. Books of Abstracts, 1st International Symposium on Sustainable Aviation, Istanbul, Turkey, 31 May-3 June 2015.
dc.relation.references[8] Onuorah, S.; Obika, I.; Orji, M.; Odibo, F. Microbial Conta-minants in the Commercial Aviation Fuel Obtained from Benin City Airport, Nigeria. Univers. J. Microbiol. Res. 2015, 3, 31−35. https://doi.org/10.13189/UJMR.2015.030301
dc.relation.references[9] Lugauskas, A.; Prosychevas, I.; Levinskaitė, L.; Jaskelevičius, B. Physical and Chemical Aspects of Long-Term Biodeterioration of Some Polymers and Composites. Environ. Toxicol. 2004, 19, 318-328. https://doi.org/10.1002/tox.20028
dc.relation.references[10] Rauch, M.E.: Graef, H.W.; Rozenzhak, S.M.; Jones, S.E.; Bleckmann, C.A.; Kruger, R.L.; Naik, R.R.; Stone, M.O.
dc.relation.references[11] Characterization of Microbial Contamination in United States Air Force Aviation Fuel Tanks. J. Ind. Microbiol. Biotechnol. 2006, 33, 29-36. https://doi.org/10.1007/s10295-005-0023-x
dc.relation.references[12] Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670-699. https://doi.org/10.1007/s12010-015-1603-5
dc.relation.references[13] Imron, M.F., Kurniawan, S.B., Titah, H.S. Potential of Bacteria Isolated from Diesel-Contaminated Seawater in Diesel Biodegradation. Environ. Technol. Innov. 2019, 14, 100368. https://doi.org/10.1016/j.eti.2019.100368
dc.relation.references[14] Fathepure, B.Z. Recent Studies in Microbial Degradation of Petroleum Hydrocarbonsin Hypersaline Environments. Front. Microbiol. 2014, 5, 173. https://doi.org/10.3389/fmicb.2014.00173
dc.relation.references[15] Polutrenko, M.; Pilyashenko-Novokhatnyi, A. Effect of Nitrogenated Corrosion Inhibitors on the Growth and Ferment Activity of Sulfur Cycle Bacteria. Chem. Chem. Technol. 2013, 7, 471-475. https://doi.org/10.23939/chcht07.04.471
dc.relation.references[16] Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M. et al. Advances in Chemical and Biological Methods to Identify Microorganisms–From Past to Present. Microorganisms 2019, 7, 130. https://doi.org/10.3390/microorganisms7050130
dc.relation.references[17] Boichenko, S.V.; Shkilniuk, I.O.; Novak, A.O. Metodyka vyznachennia mikrobiolohichnoho zabrudnennia aviatsiinykh palyv. Ukraine 94190, October 10, 2014.
dc.relation.references[18] Kumar, A.; Murthy, L.N.; Jeyakumari, A.; Laly, S.J. Sterilization Technique Used in Microbiology. In Microbiological Examination of Seafood Pathogens; Kumar, A.; Murthy, L.N.; Jeyakumari, A.; Laly, S.J., Eds.; Mumbai Research Centre of ICAR- Central Institute of Fisheries Technology, Vashi, India, 2019; pp 3-5.
dc.relation.references[19] Das, D. Essential Practical Handbook of Cell Biology & Genetics, Biometry & Microbiology; Academic Publishers: Kolkata, 2017.
dc.relation.references[20] Madison, B.M. Application of Stains in Clinical Microbiolo-gy. Biotech. Histochem. 2001, 76, 119-125 https://doi.org/10.1080/bih.76.3.119.125
dc.relation.references[21] Ali-Shtayeh, M. S. A.; Jamous, R. M.; Yaghmour, R. M. Mycology Manual; National University: Nablus, Palestine, 2013.
dc.relation.references[22] Bücker, F.; de Moura, T.M.; da Cunha, M.E.; de Quadros, P.D.; Beker, S.A.; Cazarolli, J.C.; Caramão, E.B.; Frazzon, A.P.G.; Bento, F.M. Evaluation of the Deteriogenic Microbial Community Using qPCR, n-Alkanes and FAMEs Biodegradation in Diesel, Biodiesel and Blends (B5, B10, and B50) During Storage. Fuel 2018, 233, 911-917. https://doi.org/10.1016/j.fuel.2017.11.076
dc.relation.references[23] Altaie, M.A.H.; Janius, R.B.; Yunus, R.; Taufiq-Yap, Y.H.; Zakaria, R. Degradation of Enriched Biodiesel under Different Storage Conditions. Biofuels 2017, 8, 181-186. https://doi.org/10.1080/17597269.2016.1215070
dc.relation.referencesen[1] Patrylak, L.; Patrylak, K.; Okhrimenko, M.; Zubenko, S.; Levterov, A.; Savytskyi, V. Comparison of Power-Ecological Characteristics of Diesel Engine Work on Mixed Diesel Fuels on the Basis of Ethyl Esters of Rapeseed and Sunflower Oils. Chem. Chem. Technol. 2015, 9, 383−390. https://doi.org/10.23939/chcht09.03.383
dc.relation.referencesen[2] Maymuchar; Wirahadi, D.; Faturrahman, N.A.; Febria, M.; Hanifuddin, M.; Aisyah, L.; Supriadi, F.; Bethari, S.A.; Karina, R.M.; Rulianto, D. et al. The Effect Characteristics Cetane Number of Commercial High-Speed Diesel Fuel-Biodiesel Palm Oil-Based Blends on CFR engine. IOP Conference Series: Earth and Envi-ronmental Science 2022, 1034, 012044. https://doi.org/10.1088/1755-1315/1034/1/012044
dc.relation.referencesen[3] Wu, G.; Ge, J.C.; Choi, N.J. A Comprehensive Review of the Application Characteristics of Biodiesel Blends in Diesel Engines. Appl. Sci. 2020, 10, 8015. https://doi.org/10.3390/app10228015
dc.relation.referencesen[4] Sorate, K.A.; Bhale, P.V. Biodiesel Properties and Automo-tive System Compatibility Issues. Renew. Sust. Energ. Rev. 2015, 41, 777−798. https://doi.org/10.1016/j.rser.2014.08.079
dc.relation.referencesen[5] Passman, F.J. Microbial Contamination and its Control in Fuels and Fuel Systems Since 1980 – A Review. Int. Biodeterior. Biodegradation 2013, 81, 88-104. https://doi.org/10.1016/j.ibiod.2012.08.002
dc.relation.referencesen[6] Matveeva, E.; Vasylchenko, A.; Demianko, D. Mikrobiolohi-cheskoe porazhenie aviatsionnykh topliv. Systemy ozbroiennia i viiskova tekhnika 2011, 26, 152−156.
dc.relation.referencesen[7] Shkilniuk, I. Books of Abstracts, 1st International Symposium on Sustainable Aviation, Istanbul, Turkey, 31 May-3 June 2015.
dc.relation.referencesen[8] Onuorah, S.; Obika, I.; Orji, M.; Odibo, F. Microbial Conta-minants in the Commercial Aviation Fuel Obtained from Benin City Airport, Nigeria. Univers. J. Microbiol. Res. 2015, 3, 31−35. https://doi.org/10.13189/UJMR.2015.030301
dc.relation.referencesen[9] Lugauskas, A.; Prosychevas, I.; Levinskaitė, L.; Jaskelevičius, B. Physical and Chemical Aspects of Long-Term Biodeterioration of Some Polymers and Composites. Environ. Toxicol. 2004, 19, 318-328. https://doi.org/10.1002/tox.20028
dc.relation.referencesen[10] Rauch, M.E., Graef, H.W.; Rozenzhak, S.M.; Jones, S.E.; Bleckmann, C.A.; Kruger, R.L.; Naik, R.R.; Stone, M.O.
dc.relation.referencesen[11] Characterization of Microbial Contamination in United States Air Force Aviation Fuel Tanks. J. Ind. Microbiol. Biotechnol. 2006, 33, 29-36. https://doi.org/10.1007/s10295-005-0023-x
dc.relation.referencesen[12] Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670-699. https://doi.org/10.1007/s12010-015-1603-5
dc.relation.referencesen[13] Imron, M.F., Kurniawan, S.B., Titah, H.S. Potential of Bacteria Isolated from Diesel-Contaminated Seawater in Diesel Biodegradation. Environ. Technol. Innov. 2019, 14, 100368. https://doi.org/10.1016/j.eti.2019.100368
dc.relation.referencesen[14] Fathepure, B.Z. Recent Studies in Microbial Degradation of Petroleum Hydrocarbonsin Hypersaline Environments. Front. Microbiol. 2014, 5, 173. https://doi.org/10.3389/fmicb.2014.00173
dc.relation.referencesen[15] Polutrenko, M.; Pilyashenko-Novokhatnyi, A. Effect of Nitrogenated Corrosion Inhibitors on the Growth and Ferment Activity of Sulfur Cycle Bacteria. Chem. Chem. Technol. 2013, 7, 471-475. https://doi.org/10.23939/chcht07.04.471
dc.relation.referencesen[16] Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M. et al. Advances in Chemical and Biological Methods to Identify Microorganisms–From Past to Present. Microorganisms 2019, 7, 130. https://doi.org/10.3390/microorganisms7050130
dc.relation.referencesen[17] Boichenko, S.V.; Shkilniuk, I.O.; Novak, A.O. Metodyka vyznachennia mikrobiolohichnoho zabrudnennia aviatsiinykh palyv. Ukraine 94190, October 10, 2014.
dc.relation.referencesen[18] Kumar, A.; Murthy, L.N.; Jeyakumari, A.; Laly, S.J. Sterilization Technique Used in Microbiology. In Microbiological Examination of Seafood Pathogens; Kumar, A.; Murthy, L.N.; Jeyakumari, A.; Laly, S.J., Eds.; Mumbai Research Centre of ICAR- Central Institute of Fisheries Technology, Vashi, India, 2019; pp 3-5.
dc.relation.referencesen[19] Das, D. Essential Practical Handbook of Cell Biology & Genetics, Biometry & Microbiology; Academic Publishers: Kolkata, 2017.
dc.relation.referencesen[20] Madison, B.M. Application of Stains in Clinical Microbiolo-gy. Biotech. Histochem. 2001, 76, 119-125 https://doi.org/10.1080/bih.76.3.119.125
dc.relation.referencesen[21] Ali-Shtayeh, M. S. A.; Jamous, R. M.; Yaghmour, R. M. Mycology Manual; National University: Nablus, Palestine, 2013.
dc.relation.referencesen[22] Bücker, F.; de Moura, T.M.; da Cunha, M.E.; de Quadros, P.D.; Beker, S.A.; Cazarolli, J.C.; Caramão, E.B.; Frazzon, A.P.G.; Bento, F.M. Evaluation of the Deteriogenic Microbial Community Using qPCR, n-Alkanes and FAMEs Biodegradation in Diesel, Biodiesel and Blends (B5, B10, and B50) During Storage. Fuel 2018, 233, 911-917. https://doi.org/10.1016/j.fuel.2017.11.076
dc.relation.referencesen[23] Altaie, M.A.H.; Janius, R.B.; Yunus, R.; Taufiq-Yap, Y.H.; Zakaria, R. Degradation of Enriched Biodiesel under Different Storage Conditions. Biofuels 2017, 8, 181-186. https://doi.org/10.1080/17597269.2016.1215070
dc.relation.urihttps://doi.org/10.23939/chcht09.03.383
dc.relation.urihttps://doi.org/10.1088/1755-1315/1034/1/012044
dc.relation.urihttps://doi.org/10.3390/app10228015
dc.relation.urihttps://doi.org/10.1016/j.rser.2014.08.079
dc.relation.urihttps://doi.org/10.1016/j.ibiod.2012.08.002
dc.relation.urihttps://doi.org/10.13189/UJMR.2015.030301
dc.relation.urihttps://doi.org/10.1002/tox.20028
dc.relation.urihttps://doi.org/10.1007/s10295-005-0023-x
dc.relation.urihttps://doi.org/10.1007/s12010-015-1603-5
dc.relation.urihttps://doi.org/10.1016/j.eti.2019.100368
dc.relation.urihttps://doi.org/10.3389/fmicb.2014.00173
dc.relation.urihttps://doi.org/10.23939/chcht07.04.471
dc.relation.urihttps://doi.org/10.3390/microorganisms7050130
dc.relation.urihttps://doi.org/10.1080/bih.76.3.119.125
dc.relation.urihttps://doi.org/10.1016/j.fuel.2017.11.076
dc.relation.urihttps://doi.org/10.1080/17597269.2016.1215070
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Popytailenko D., Shevchenko O., 2023
dc.subjectдизельне паливо
dc.subjectметилові естери жирних кислот
dc.subjectмікробіологічне ураження
dc.subjectсумішеві палива
dc.subjectblended fuels
dc.subjectdiesel fuel
dc.subjectmethyl esters of fatty acids
dc.subjectmicrobiological damage
dc.titleImproved Method for Determining Microbiological Contamination of Fatty Acid Methyl Esters and Blended Diesel Fuels
dc.title.alternativeУдосконалена методика визначення мікробіологічного забруднення метилових естерів жирних кислот і сумішевих дизельних палив
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n1_Popytailenko_D-Improved_Method_for_203-210.pdf
Size:
511.79 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n1_Popytailenko_D-Improved_Method_for_203-210__COVER.png
Size:
526.37 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: