Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude

dc.citation.epage36
dc.citation.issue1
dc.citation.spage30
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationПолітехніка Опольська
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine
dc.contributor.affiliationOpole University of Tecnnology
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГачкевич, О.
dc.contributor.authorМусій, Р.
dc.contributor.authorHachkevych, O.
dc.contributor.authorMusij, R.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-27T09:45:21Z
dc.date.available2020-02-27T09:45:21Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractУ роботі запропоновано математичну модель опису та методику визначення термо- напруженого стану неферомагнітних електропровідних тіл під дією зовнішніх нестаціонарних електромагнітних полів імпульсного типу, які мають характер запровадженого в інженерній практиці режиму з модуляцією температури за імпульсного модулівного сигналу. Ця модель є розвитком відомих у літературі моделей для квазістаціонарного та імпульсного електромагнітних полів. Як приклад наведено результати досліджень термомеханічної поведінки суцільного і порожнистого циліндрів за дії на них електромагнітного імпульсу.
dc.description.abstractA mathematical model of description and a method for determining the thermostressed state of non-ferromagnetic electroconductive bodies under the influence of external unsteady electromagnetic fields of pulsed type are proposed. Such fields have the character of a regime with amplitude modulation under the action of pulse modulated signal and are widely used in technologies of magnetic pulsed processing electroconductive materials. This model is the development of well-known models for quasi-steady and pulsed electromagnetic fields. As an example, the results of investigation of the thermomechanical behavior of solid and hollow cylinders under the influence of electromagnetic pulse are given.
dc.format.extent30-36
dc.format.pages7
dc.identifier.citationHachkevych O. Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude / O. Hachkevych, R. Musij // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 30–36.
dc.identifier.citationenHachkevych O. Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude / O. Hachkevych, R. Musij // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 30–36.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46154
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (6), 2019
dc.relation.references1. BatyginYu., LavinskyV., Khimenko L.T. Pulsed Magnetic Fields for Advanced Technologies. Kharkov, BRIDGE Tornado (2003), (in Russian).
dc.relation.references2. ShneersonG.A., DolotenkoM. I., Krivosheev S. I. Strong and Superstrong Pulsed Magnetic Fields Generation. De Gruyter (2010).
dc.relation.references3. Asai S. Electromagnetic Processing of Materials. Springer, Netherlands (2012).
dc.relation.references4. ParkinsonA.H., MullhallB.E. The generation of high magnetic fields. New York, Plenum Press (1967).
dc.relation.references5. MiuraN., Herlach F. Pulsed and ultrastrong magnetic fields. In: Herlach F. (eds) Strong and Ultrastrong Magnetic Fields and Their Applications. Top. Appl. Phys. Vol. 57. Springer, Berlin, Heidelberg (1985).
dc.relation.references6. Herlach F. Pulsed Magnets. Rep. Prog. Phys. 62 (6), 859–920 (1999).
dc.relation.references7. MontgomeryD.B. Solenoid Magnet Design. Wiley-Interscience (1969).
dc.relation.references8. KnoepfelH. Pulsed High Magnetic Fields. North-Holland Publ. (1970).
dc.relation.references9. Moon F.C. Problems in magneto-solid-mechanics. Mech. Today. 4, 307–390 (1978).
dc.relation.references10. Moon F.C. Mechanics of Superconducting Structures. New York, ASME, AMD vol. 41 (1980).
dc.relation.references11. Moon F.C., Chattopadhyay S. Magnetically Induced Stress Waves in a Conduction Solid – Theory and Experiment. J. Appl. Mech. 41 (3), 641–646 (1974).
dc.relation.references12. HachkevychO.R., MusiiR. S. Temperature fields and stress state of an electrically conductive layer under the magnetic shock on its surfaces. In: Physicomechanical fields in deformable media. Kiev, Naukova Dumka, 28–33 (1978), (in Russian).
dc.relation.references13. HachkevychO.R., MusiiR. S. Temperature fields and thermoelastic state of electrically conductive plates under the magnetic shock. Math. Meth. Phys. Mech. Fields. 7, 115–118 (1978), (in Russian).
dc.relation.references14. Ambartsumian S.A., BagdasarianG.E., BelubekianM.V. On the magnetoelasticity of thin shells and plates: PMM Vol. 37, N◦1, 1973, pp. 114–130. J. Appl. Math. Mech. 37 (1), 102–118 (1973).
dc.relation.references15. PodstrigachYa. S., BurakYa.Y., HachkevychO.R., Chernyavskaya L.V. Thermoelasticity of electrically conductive bodies. Kiev, Naukova Dumka (1977), (in Russian).
dc.relation.references16. MauginG.A. Continuum Mechanics of Electromagnetic Solids. North-Holland (1988).
dc.relation.references17. BurakYa.Y., GachkevichA.R., MusiiR. S. Thermoelasticity of conductive solids under the conditions of pulsed electromagnetic fields. Matematychni Metody ta Fizyko-Mekhanichni Polya. 49 (1), 75–84 (2006), (in Ukrainian).
dc.relation.references18. GachkevichA.R., MusiiR. S., TarlakovskyD.V. Thermomechanics of Non-ferromagnetic Conductive Solids under the Action of Pulsed Electromagnetic Fields with Amplitude Modulation. Lviv, SPOLOM (2011), (in Ukrainian).
dc.relation.references19. MusiiR. S. Thermal Stressed State of Conducting Cylinders Subjected to the Electromagnetic Action in the Mode with Pulsed Modulating Signals. Materials Science. 50 (4), 496–506 (2015).
dc.relation.references20. BoleyB.A., Weiner J.H. Theory of Thermal Stresses. New York, Wiley (1960).
dc.relation.references21. KovalenkoA.D. Thermoelasticity: Basic Theory and Applications. Wolters-Noordhoff Publ. (1970).
dc.relation.references22. NowackiW. Dynamic Problems of Thermoelasticity. Springer (1975).
dc.relation.references23. HetnarskiR.B., EslamiM.R. Thermal Stresses – Advanced Theory and Applications. Springer Netherlands (2009).
dc.relation.referencesen1. BatyginYu., LavinskyV., Khimenko L.T. Pulsed Magnetic Fields for Advanced Technologies. Kharkov, BRIDGE Tornado (2003), (in Russian).
dc.relation.referencesen2. ShneersonG.A., DolotenkoM. I., Krivosheev S. I. Strong and Superstrong Pulsed Magnetic Fields Generation. De Gruyter (2010).
dc.relation.referencesen3. Asai S. Electromagnetic Processing of Materials. Springer, Netherlands (2012).
dc.relation.referencesen4. ParkinsonA.H., MullhallB.E. The generation of high magnetic fields. New York, Plenum Press (1967).
dc.relation.referencesen5. MiuraN., Herlach F. Pulsed and ultrastrong magnetic fields. In: Herlach F. (eds) Strong and Ultrastrong Magnetic Fields and Their Applications. Top. Appl. Phys. Vol. 57. Springer, Berlin, Heidelberg (1985).
dc.relation.referencesen6. Herlach F. Pulsed Magnets. Rep. Prog. Phys. 62 (6), 859–920 (1999).
dc.relation.referencesen7. MontgomeryD.B. Solenoid Magnet Design. Wiley-Interscience (1969).
dc.relation.referencesen8. KnoepfelH. Pulsed High Magnetic Fields. North-Holland Publ. (1970).
dc.relation.referencesen9. Moon F.C. Problems in magneto-solid-mechanics. Mech. Today. 4, 307–390 (1978).
dc.relation.referencesen10. Moon F.C. Mechanics of Superconducting Structures. New York, ASME, AMD vol. 41 (1980).
dc.relation.referencesen11. Moon F.C., Chattopadhyay S. Magnetically Induced Stress Waves in a Conduction Solid – Theory and Experiment. J. Appl. Mech. 41 (3), 641–646 (1974).
dc.relation.referencesen12. HachkevychO.R., MusiiR. S. Temperature fields and stress state of an electrically conductive layer under the magnetic shock on its surfaces. In: Physicomechanical fields in deformable media. Kiev, Naukova Dumka, 28–33 (1978), (in Russian).
dc.relation.referencesen13. HachkevychO.R., MusiiR. S. Temperature fields and thermoelastic state of electrically conductive plates under the magnetic shock. Math. Meth. Phys. Mech. Fields. 7, 115–118 (1978), (in Russian).
dc.relation.referencesen14. Ambartsumian S.A., BagdasarianG.E., BelubekianM.V. On the magnetoelasticity of thin shells and plates: PMM Vol. 37, N◦1, 1973, pp. 114–130. J. Appl. Math. Mech. 37 (1), 102–118 (1973).
dc.relation.referencesen15. PodstrigachYa. S., BurakYa.Y., HachkevychO.R., Chernyavskaya L.V. Thermoelasticity of electrically conductive bodies. Kiev, Naukova Dumka (1977), (in Russian).
dc.relation.referencesen16. MauginG.A. Continuum Mechanics of Electromagnetic Solids. North-Holland (1988).
dc.relation.referencesen17. BurakYa.Y., GachkevichA.R., MusiiR. S. Thermoelasticity of conductive solids under the conditions of pulsed electromagnetic fields. Matematychni Metody ta Fizyko-Mekhanichni Polya. 49 (1), 75–84 (2006), (in Ukrainian).
dc.relation.referencesen18. GachkevichA.R., MusiiR. S., TarlakovskyD.V. Thermomechanics of Non-ferromagnetic Conductive Solids under the Action of Pulsed Electromagnetic Fields with Amplitude Modulation. Lviv, SPOLOM (2011), (in Ukrainian).
dc.relation.referencesen19. MusiiR. S. Thermal Stressed State of Conducting Cylinders Subjected to the Electromagnetic Action in the Mode with Pulsed Modulating Signals. Materials Science. 50 (4), 496–506 (2015).
dc.relation.referencesen20. BoleyB.A., Weiner J.H. Theory of Thermal Stresses. New York, Wiley (1960).
dc.relation.referencesen21. KovalenkoA.D. Thermoelasticity: Basic Theory and Applications. Wolters-Noordhoff Publ. (1970).
dc.relation.referencesen22. NowackiW. Dynamic Problems of Thermoelasticity. Springer (1975).
dc.relation.referencesen23. HetnarskiR.B., EslamiM.R. Thermal Stresses – Advanced Theory and Applications. Springer Netherlands (2009).
dc.rights.holderCMM IAPMM NAS
dc.rights.holder© 2019 Lviv Polytechnic National University
dc.subjectматематична модель
dc.subjectтермомеханіка
dc.subjectнеферомагнітні електропровідні тіла
dc.subjectпорожнистий та суцільний циліндри
dc.subjectелектромагнітний імпульс
dc.subjectmathematical model
dc.subjectthermomechanics
dc.subjectnon-ferromagnetic conductive body
dc.subjecthollow and solid cylinders
dc.subjectelectromagnetic pulse
dc.subject.udc539.3
dc.titleMathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude
dc.title.alternativeМатематичне моделювання в термомеханіці електропровідних тіл під дією імпульсних електромагнітних полів з модуляцією амплітуди
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v6n1_Hachkevych_O-Mathematical_modeling_30-36.pdf
Size:
751.45 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v6n1_Hachkevych_O-Mathematical_modeling_30-36__COVER.png
Size:
424.09 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: