Mathematical model for carbon monoxide oxidation: influence of diffusion effects
dc.citation.epage | 136 | |
dc.citation.issue | 1 | |
dc.citation.spage | 129 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Рижа, І. | |
dc.contributor.author | Гайдучок, О. | |
dc.contributor.author | Ryzha, I. | |
dc.contributor.author | Gaiduchok, O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-27T09:45:18Z | |
dc.date.available | 2020-02-27T09:45:18Z | |
dc.date.created | 2019-02-26 | |
dc.date.issued | 2019-02-26 | |
dc.description.abstract | Досліджено двовимірну математичну модель окиснення монооксиду вуглецю на поверхні платинового каталізатора згідно з механізмом Ленгмюра–Гіншелвуда, яка враховує вплив дифузійних ефектів на перебіг реакційно-дифузійних процесів. Встановлено, що адсорбовані атоми кисню можна вважати нерухомими, а структурні зміни поверхні каталізатора істотно впливають на характер коливного режиму реакції. | |
dc.description.abstract | A two-dimensional mathematical model for carbon monoxide oxidation on the platinum catalyst surface is investigated according to the Langmuir–Hinshelwood mechanism. This model takes into account the influence of diffusion effects on the course of reaction-diffusion processes. It is established that the diffusion of adsorbed oxygen atoms can be neglected, and the structural changes of the catalyst surface have a significant influence on the character of oscillatory mode of reaction. | |
dc.format.extent | 129-136 | |
dc.format.pages | 8 | |
dc.identifier.citation | Ryzha I. Mathematical model for carbon monoxide oxidation: influence of diffusion effects / I. Ryzha, O. Gaiduchok // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 129–136. | |
dc.identifier.citationen | Ryzha I. Mathematical model for carbon monoxide oxidation: influence of diffusion effects / I. Ryzha, O. Gaiduchok // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 129–136. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46148 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (6), 2019 | |
dc.relation.references | 1. KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992). | |
dc.relation.references | 2. ZiffR.M., GulariE., BarshadY. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986). | |
dc.relation.references | 3. B¨arM., Z¨ulickeC., EiswirthM., ErtlG. Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics. J. Chem. Phys. 96 (11), 8595–8604 (1992). | |
dc.relation.references | 4. Bzovska I. S., Mryglod I.M. Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction. Ukr. J. Phys. 61 (2), 134–142 (2016). | |
dc.relation.references | 5. Qiao L., LiX., Kevrekidis I.G., PuncktC., RotermundH.H. Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Phys. Rev. E. 77, 036214 (2008). | |
dc.relation.references | 6. CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003). | |
dc.relation.references | 7. B¨arM., GottschalkN., EiswirthM., ErtlG. Spiral waves in a surfacereaction: model calculations. J. Chem. Phys. 100 (2), 1202–1214 (1994). | |
dc.relation.references | 8. PavlenkoN. CO-activator model for reconstructing Pt(100) surfaces: Local microstructures and chemical turbulence. Phys. Rev. E. 77, 026203–1–10 (2008). | |
dc.relation.references | 9. KostrobijP., Ryzha I., MarkovychB. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Mathematical Modeling and Computing. 5 (2), 158–168 (2018). | |
dc.relation.references | 10. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922). | |
dc.relation.references | 11. ImbihlR., ErtlG. Oscillatory Kinetics in Heterogeneous Catalysis. Chem. Rev. 95 (3), 697–733 (1995). | |
dc.relation.references | 12. GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2)−(1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63 (10), 1086–1089 (1989). | |
dc.relation.references | 13. Ladas S., ImbihlR., ErtlG. Microfacetting of a Pt(110) surface during catalytic CO oxidation. Surf. Science. 197 (1–2), 153–182 (1988). | |
dc.relation.references | 14. Ladas S., ImbihlR., ErtlG. Kinetic oscillations and facetting during the catalytic CO oxidation on Pt(110). Surf. Science. 198 (1–2), 42–68 (1988). | |
dc.relation.references | 15. von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Science. 311 (3), 322–330 (1994). | |
dc.relation.references | 16. van KampenN.G. Stohasticheskie processy v fizike i himii. Vysshaja shkola, Moskva (1990), (in Russian). | |
dc.relation.references | 17. Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). | |
dc.relation.references | 18. ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990). | |
dc.relation.references | 19. KuchlingH. Physik Nachschlageb¨ucher f¨ur Grundlagenf¨acher. VEB Fachbuchverlag, Leipzig (1973), (in German). | |
dc.relation.references | 20. PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Science. 454 (1), 341–346 (2000). | |
dc.relation.references | 21. KostrobijP., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018). | |
dc.relation.referencesen | 1. KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992). | |
dc.relation.referencesen | 2. ZiffR.M., GulariE., BarshadY. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986). | |
dc.relation.referencesen | 3. B¨arM., Z¨ulickeC., EiswirthM., ErtlG. Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics. J. Chem. Phys. 96 (11), 8595–8604 (1992). | |
dc.relation.referencesen | 4. Bzovska I. S., Mryglod I.M. Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction. Ukr. J. Phys. 61 (2), 134–142 (2016). | |
dc.relation.referencesen | 5. Qiao L., LiX., Kevrekidis I.G., PuncktC., RotermundH.H. Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Phys. Rev. E. 77, 036214 (2008). | |
dc.relation.referencesen | 6. CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003). | |
dc.relation.referencesen | 7. B¨arM., GottschalkN., EiswirthM., ErtlG. Spiral waves in a surfacereaction: model calculations. J. Chem. Phys. 100 (2), 1202–1214 (1994). | |
dc.relation.referencesen | 8. PavlenkoN. CO-activator model for reconstructing Pt(100) surfaces: Local microstructures and chemical turbulence. Phys. Rev. E. 77, 026203–1–10 (2008). | |
dc.relation.referencesen | 9. KostrobijP., Ryzha I., MarkovychB. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Mathematical Modeling and Computing. 5 (2), 158–168 (2018). | |
dc.relation.referencesen | 10. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922). | |
dc.relation.referencesen | 11. ImbihlR., ErtlG. Oscillatory Kinetics in Heterogeneous Catalysis. Chem. Rev. 95 (3), 697–733 (1995). | |
dc.relation.referencesen | 12. GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2)−(1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63 (10), 1086–1089 (1989). | |
dc.relation.referencesen | 13. Ladas S., ImbihlR., ErtlG. Microfacetting of a Pt(110) surface during catalytic CO oxidation. Surf. Science. 197 (1–2), 153–182 (1988). | |
dc.relation.referencesen | 14. Ladas S., ImbihlR., ErtlG. Kinetic oscillations and facetting during the catalytic CO oxidation on Pt(110). Surf. Science. 198 (1–2), 42–68 (1988). | |
dc.relation.referencesen | 15. von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Science. 311 (3), 322–330 (1994). | |
dc.relation.referencesen | 16. van KampenN.G. Stohasticheskie processy v fizike i himii. Vysshaja shkola, Moskva (1990), (in Russian). | |
dc.relation.referencesen | 17. Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). | |
dc.relation.referencesen | 18. ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990). | |
dc.relation.referencesen | 19. KuchlingH. Physik Nachschlageb¨ucher f¨ur Grundlagenf¨acher. VEB Fachbuchverlag, Leipzig (1973), (in German). | |
dc.relation.referencesen | 20. PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Science. 454 (1), 341–346 (2000). | |
dc.relation.referencesen | 21. KostrobijP., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018). | |
dc.rights.holder | CMM IAPMM NAS | |
dc.rights.holder | © 2019 Lviv Polytechnic National University | |
dc.subject | каталітична реакція окиснення | |
dc.subject | реакційно-дифузійна модель | |
dc.subject | математичне моделювання реакційно-дифузійних процесів | |
dc.subject | reaction of catalytic oxidation | |
dc.subject | reaction-diffusion model | |
dc.subject | mathematical modeling of reaction-diffusion processes | |
dc.subject.udc | 519.876.5 | |
dc.subject.udc | 66.011 | |
dc.title | Mathematical model for carbon monoxide oxidation: influence of diffusion effects | |
dc.title.alternative | Математична модель оксидації чадного газу: вплив дифузійних ефектів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1