Enlarging the radius of convergence for Newton–like method in which the derivative is re-evaluated after certain steps
dc.citation.epage | 598 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 594 | |
dc.contributor.affiliation | Університет Кемерона | |
dc.contributor.affiliation | Львівський національний університет імені Івана Франка | |
dc.contributor.affiliation | Cameron University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Аргирос, К. І. | |
dc.contributor.author | Аргирос, І. К. | |
dc.contributor.author | Шахно, С. М. | |
dc.contributor.author | Ярмола, Г. П. | |
dc.contributor.author | Argyros, C. I. | |
dc.contributor.author | Argyros, I. K. | |
dc.contributor.author | Shakhno, S. M. | |
dc.contributor.author | Yarmola, H. P. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:32:57Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Зроблено спробу збільшити радіус області збіжності методу типу Ньютона за тих же умов, за яких метод вивчався раніше. Аналіз збіжності проведено за центральних та обмежених умов Ліпшиця. Крім радіусу області збіжності, вдалося отримати точніші оцінки похибки, а також більший радіус області єдиності розв’язку. Ці переваги є чисельно обґрунтованими. | |
dc.description.abstract | Numerous attempts have been made to enlarge the radius of convergence for Newton–like method under the same set of conditions. It turns out that not only the radius of convergence but the error bounds on the distances involved and the uniqueness of the solution ball can more accurately be defined. | |
dc.format.extent | 594-598 | |
dc.format.pages | 5 | |
dc.identifier.citation | Enlarging the radius of convergence for Newton–like method in which the derivative is re-evaluated after certain steps / C. I. Argyros, I. K. Argyros, S. M. Shakhno, H. P. Yarmola // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 594–598. | |
dc.identifier.citationen | Enlarging the radius of convergence for Newton–like method in which the derivative is re-evaluated after certain steps / C. I. Argyros, I. K. Argyros, S. M. Shakhno, H. P. Yarmola // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 594–598. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.03.594 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63457 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (9), 2022 | |
dc.relation.references | [1] Măruşter Ş., Estimating local radius of convergence. Symposium “Symbolic and Numeric Algorithm for Scientific Computation” (SYNASC), Workshop Iteratime Approximation of Fixed Points, 24–27 Sept. 2016. West University of Timisoara, Timisoara, Romania (2016). | |
dc.relation.references | [2] Măruşter Ş., On the local convergence of the Modified Newton method. Annals of West University of Timisoara – Mathematics and Computer Science. 57 (1), 13–22 (2019). | |
dc.relation.references | [3] Potra F. A., Pt´ak V. Nondiscrete induction and iterative processes. Pitman Publ., London (1984). | |
dc.relation.references | [4] Traub J. F. Iterative methods for the solution of equations. Chelsea Publishing Company, New York (1982). | |
dc.relation.references | [5] Ortega J. M., Rheinboldt W. C. Iterative solution of nonlinear equation in several variables. Acad. Press, New York (1970). | |
dc.relation.references | [6] Ezquerro J. A, Hern´andez M. A. An improvement of the region of accessibility of Chebyshev’s method from Newton’s method. Mathematics of Computation. 78 (267), 1613–1627 (2009). | |
dc.relation.references | [7] Ezquerro J. A, Hern´andez M. A. An optimization of Chebyshev’s method. Journal of Complexity. 25 (4), 343–361 (2009). | |
dc.relation.references | [8] Hern´andez-Veron M. A., Romero N. On the local convergence of a third order family of iterative processes. Algorithms. 8, 1121–1128 (2015). | |
dc.relation.references | [9] C˘atina¸s E. Estimating the radius of an attraction ball. Applied Mathematics Letters. 22, 712–714 (2009). | |
dc.relation.references | [10] Iakymchuk R. P., Shakhno S. M., Yarmola H. P. Convergence analysis of a two-step modification of the Gauss–Newton method and its applications. Journal of Numerical and Applied Mathematics. 126, 61–74 (2017). | |
dc.relation.references | [11] Magre˜n´an A. A., Argyros I. K. Two-step Newton methods. Journal of Complexity. ´ 30 (4), 533–553 (2014). | |
dc.relation.references | [12] Argyros I. K., Shakhno S. Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics. 7 (1), 62 (2019). | |
dc.relation.references | [13] Argyros I. K., Magre˜n´an A. A. A Contemporary Study of Iterative Methods. Convergence, Dynamics and Applications. 333–346 (2018). | |
dc.relation.references | [14] Shakhno S. M. On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. Journal of Computational and Applied Mathematics. 231 (1), 222–235 (2009). | |
dc.relation.references | [15] Argyros I. K., Shakhno S., Yarmola H. Two-Step Solver for Nonlinear Equations. Symmetry. 11 (2), 128 (2019). | |
dc.relation.references | [16] Kantorovich L. V., Akilov G. P. Functional Analysis. Oxford, Pergamon (1982). | |
dc.relation.referencesen | [1] Măruşter Ş., Estimating local radius of convergence. Symposium "Symbolic and Numeric Algorithm for Scientific Computation" (SYNASC), Workshop Iteratime Approximation of Fixed Points, 24–27 Sept. 2016. West University of Timisoara, Timisoara, Romania (2016). | |
dc.relation.referencesen | [2] Măruşter Ş., On the local convergence of the Modified Newton method. Annals of West University of Timisoara – Mathematics and Computer Science. 57 (1), 13–22 (2019). | |
dc.relation.referencesen | [3] Potra F. A., Pt´ak V. Nondiscrete induction and iterative processes. Pitman Publ., London (1984). | |
dc.relation.referencesen | [4] Traub J. F. Iterative methods for the solution of equations. Chelsea Publishing Company, New York (1982). | |
dc.relation.referencesen | [5] Ortega J. M., Rheinboldt W. C. Iterative solution of nonlinear equation in several variables. Acad. Press, New York (1970). | |
dc.relation.referencesen | [6] Ezquerro J. A, Hern´andez M. A. An improvement of the region of accessibility of Chebyshev’s method from Newton’s method. Mathematics of Computation. 78 (267), 1613–1627 (2009). | |
dc.relation.referencesen | [7] Ezquerro J. A, Hern´andez M. A. An optimization of Chebyshev’s method. Journal of Complexity. 25 (4), 343–361 (2009). | |
dc.relation.referencesen | [8] Hern´andez-Veron M. A., Romero N. On the local convergence of a third order family of iterative processes. Algorithms. 8, 1121–1128 (2015). | |
dc.relation.referencesen | [9] C˘atina¸s E. Estimating the radius of an attraction ball. Applied Mathematics Letters. 22, 712–714 (2009). | |
dc.relation.referencesen | [10] Iakymchuk R. P., Shakhno S. M., Yarmola H. P. Convergence analysis of a two-step modification of the Gauss–Newton method and its applications. Journal of Numerical and Applied Mathematics. 126, 61–74 (2017). | |
dc.relation.referencesen | [11] Magre˜n´an A. A., Argyros I. K. Two-step Newton methods. Journal of Complexity. ´ 30 (4), 533–553 (2014). | |
dc.relation.referencesen | [12] Argyros I. K., Shakhno S. Extending the Applicability of Two-Step Solvers for Solving Equations. Mathematics. 7 (1), 62 (2019). | |
dc.relation.referencesen | [13] Argyros I. K., Magre˜n´an A. A. A Contemporary Study of Iterative Methods. Convergence, Dynamics and Applications. 333–346 (2018). | |
dc.relation.referencesen | [14] Shakhno S. M. On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. Journal of Computational and Applied Mathematics. 231 (1), 222–235 (2009). | |
dc.relation.referencesen | [15] Argyros I. K., Shakhno S., Yarmola H. Two-Step Solver for Nonlinear Equations. Symmetry. 11 (2), 128 (2019). | |
dc.relation.referencesen | [16] Kantorovich L. V., Akilov G. P. Functional Analysis. Oxford, Pergamon (1982). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | радіус збіжності | |
dc.subject | метод типу Ньютона | |
dc.subject | гільбертів простір | |
dc.subject | radius of convergence | |
dc.subject | Newton–like method | |
dc.subject | Hilbert space | |
dc.title | Enlarging the radius of convergence for Newton–like method in which the derivative is re-evaluated after certain steps | |
dc.title.alternative | Збільшення радіусу збіжності методу типу Ньютона, в якому похідна обчислюється через декілька кроків | |
dc.type | Article |
Files
License bundle
1 - 1 of 1