Comparative analysis of interference, noise and losses in the mobile communication systems in millimeter wave range
dc.citation.epage | 25 | |
dc.citation.issue | 1 | |
dc.citation.spage | 18 | |
dc.contributor.affiliation | State University of Telecommunications | |
dc.contributor.author | Кременецька, Яна | |
dc.contributor.author | Марков, Сергій | |
dc.contributor.author | Kremenetskaya, Yana | |
dc.contributor.author | Markov, Sergey | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-26T10:58:34Z | |
dc.date.available | 2020-02-26T10:58:34Z | |
dc.date.created | 2018-02-01 | |
dc.date.issued | 2018-02-01 | |
dc.description.abstract | Проаналізовано підходи до математичного моделю- вання мобільних систем у міліметровому діапазоні хвиль. Розглянуто архітектуру мобільної мережі з використанням технології Radio over Fiber (радіо по волокну), запро- поновану для формування і передавання сигналів міліметрового діапазону через волоконно-оптичні лінії. Проаналізовано шуми оптичного гетеродинування, що застосовують для формування радіосигналів. Проведено математичний аналіз складових енергетичного бюджету радіолінії в міліметровому діапазоні на основі дослідження фундаментальних фізичних аспектів, що впливають на значення шумів, втрат і підсилень сигналу. Виконано порівняльний аналіз показників співвідношеннь сигнал/ інтерференція та сигнал/шум. Запропоновано квазіоптичну модель конусоподібного випромінювання антени для розрахунків шумових завад і втрат сигналу в багатопро- меневих моделях поширення з урахуванням множинних відображень і дифракцій, а також поглинання у різних середовищах. З аналізу складових енергетичного бюджету радіолінії в міліметровому діапазоні випливає, що необхідно в моделях покриття мобільних систем враховувати як за- лежність від інтерференційних завад, так і шуми, пов’язані з методом генерації, випромінювання сигналів, а також ефекти молекулярного поглинання (повторного випро- мінювання) в атмосфері й ефекти відображення сигналів у міській забудові. | |
dc.description.abstract | The article analyzes the approaches to the mathematical modeling of mobile systems in the millimeter wave range. The architecture of a mobile network using Radio over Fiber (RoF) technology is considered which is proposed for forming and transmitting the millimeter-wave signals via fiber-optic communication lines. The noise of the optical heterodyne used for the formation of radio signals is analyzed. The mathematical analysis of the components of the energy budget of the radio link in the millimeter wave range is carried out on the basis of a study of the fundamental physical aspects that affect the value of noise, losses and signal gains. The comparative analysis of the signal-to-interference ratio and the signal-to-noise ratio, the probability of transmitting information radio signals through the reflected paths is carried out. A quasi-optical model of the narrow-beam antenna radiation is proposed for calculating noise interference and signal loss in multipath propagation models taking into account multiple reflections and diffractions, as well as absorption in various media. The analysis of the energy budget components of the radio link in the millimeter wave range shows that it is necessary to take into account both interference and noise associated with the method of signal generation and emission, for example, in phased antenna arrays, as well as the effects of molecular absorption (repeated radiation) in the atmosphere and the effects of the reflection of signals in urban scenario. | |
dc.format.extent | 18-25 | |
dc.format.pages | 8 | |
dc.identifier.citation | Kremenetskaya Y. Comparative analysis of interference, noise and losses in the mobile communication systems in millimeter wave range / Yana Kremenetskaya, Sergey Markov // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 8. — No 1. — P. 18–25. | |
dc.identifier.citationen | Kremenetskaya Y. Comparative analysis of interference, noise and losses in the mobile communication systems in millimeter wave range / Yana Kremenetskaya, Sergey Markov // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 8. — No 1. — P. 18–25. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46076 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 1 (8), 2018 | |
dc.relation.references | 1. Rappaport, Y. Xing, G. R. MacCartney, Jr. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifthgeneration (5G) wireless networks”, IEEE Transactions on Antennas and Propagation, vol. 65, pp. 6213–6230, 2017. | |
dc.relation.references | 2. H. L. Bertoni, Radio Propagation for Modern Wireless Systems. New Jersey, USA: Prentice Hall PTR, 2000. | |
dc.relation.references | 3. V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in Millimeter Wave and Terahertz Communication Systems with Blocking and Directional Antennas”, IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1791–1808, 2017. | |
dc.relation.references | 4. J. M. Jornet and I. F. Akyildiz, “Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band”, IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3211–221, 2011. | |
dc.relation.references | 5. V. J. Urick, J. D. McKinney and K. J. Williams, Fundamentals of Microwave Photonics. New Jersey, USA: Wiley, 2015. | |
dc.relation.references | 6. Y. A. Kremenetskaya, G. S. Felinsky, Y. V. Melnik, E. A. Bondarenko Print. N. Siakavellas, “Features of the Formation of Millimeter and Terahertz Waveforms”, Naukovi Zapysky Ukrayinskoho Naukovo-Doslidnoho Instytutu Zviazku, vol. 3, no. 47, pp. 50–63, 2017. | |
dc.relation.references | 7. G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Bеlisle, X. Zhang, K. Wu, and R. Kashyap, “Phase-Noise Analysis of Optically Generated Millimeter-Wave Signals With External Optical Modulation Techniques”, Juornal of Lightwave Technol, no. 24, pp. 4861–4875. 2006. | |
dc.relation.references | 8. J. M. Jornet and I. F. Akyildiz, “Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks,” IEEE Transactions on Communications, vol. 62, no. 5, pp. 1742–1754, 2014. | |
dc.relation.references | 9. A. Narayanan, T. V. Sreejith, and R. K. Ganti, “Coverage Analysis in Millimeter Wave Cellular Networks with Reflections”, IEEE Global Communications Conference, pp. 1–6, 2017. | |
dc.relation.references | 10. Y. A. Kremenetska, N. V. Gradoboyeva, and S. V. Morozova, “Increase in energy efficiency of millimetres systems by the method of channel gain due to diffraction and reflection” Comparative Analysis of Interference, Noise and Losses in the Mobile… 25 | |
dc.relation.references | 11. H. Shokri-Ghadikolaei and C. Fischione, “Millimeter wave ad hoc networks: Noise-limited or interference-limited?” in Proc. IEEE Global Commun. Workshop, pp. 1–7, San Diego, USA, 2015. | |
dc.relation.references | 12. S. Niknam, B. Natarajan, and H. Mehrpouyan, “A spatial-spectral interference model for millimeter wave 5G applications,” in Proc. IEEE 86th Vehicular Technology Conference, pp. 1–5, Toronto, Canada, 2017. | |
dc.relation.references | 13. R. C. Hansen, Hansen R. C. Phased Array Antennas. 2-nd edition. New Jersey, USA: Wiley-Interscience, 2009. | |
dc.relation.references | 14. Y. A. Kremenetskaya, I. O. Lis-kovskiy, and E. R. Zhukova, “Quasi-optical approach to the analysis of the energy model of millimeter wave propagation and antenna characteristics,” in Proc. IEEE International Conference on Antenna Theory and Techniques, pp. 395-398, Ukraine, Kyiv, 2017. | |
dc.relation.references | 15. B. Sklar, Digital communications: fundamentals and applications, 2-nd edition. New Jersey, USA: Prentice Hall, 2001. | |
dc.relation.references | 16. L. S. Rothman et al., “Hitran: High-resolution transmission molecular absorption database”, https://www.cfa.harvard.edu. | |
dc.relation.references | 17. J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “A discussion on molecular absorption noise in the terahertz band”, Juornal of Nano Communication Networks, vol.8, pp. 35–45, 2010. | |
dc.relation.references | 18. J. M. Jornet and I. F. Akyildiz, “Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band”, in Proc. IEEE International Conference on Communications, pp. 1–6, Kyoto, Japan, 2011. | |
dc.relation.references | 19. H. Zhao et al., “GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city”, in Proc. IEEE International Conference on Communications, pp. 5163–5167, Budapes, Hungary, 2013. | |
dc.relation.references | 20. A. Engelbrecht, Computational intelligence: an introduction. Australia, Sidney: John Wiley & Sons, 2007. | |
dc.relation.references | 21. M. Haenggi and R. K. Ganti, “Interference in Large Wireless Networks”, Foundations and Trends® in Networking, vol.473, no 2, pp. 127–248, 2009. | |
dc.relation.references | 22. P. Pinto and M. Win Pinto, “Communication in a Poisson field of interfererspart I: interference distribution and error probability”, IEEE Trans. Wireless Commun. vol. 9, no 7, pp. 2176–2186, 2010. | |
dc.relation.referencesen | 1. Rappaport, Y. Xing, G. R. MacCartney, Jr. Molisch, E. Mellios, and J. Zhang, "Overview of millimeter wave communications for fifthgeneration (5G) wireless networks", IEEE Transactions on Antennas and Propagation, vol. 65, pp. 6213–6230, 2017. | |
dc.relation.referencesen | 2. H. L. Bertoni, Radio Propagation for Modern Wireless Systems. New Jersey, USA: Prentice Hall PTR, 2000. | |
dc.relation.referencesen | 3. V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, "Interference and SINR in Millimeter Wave and Terahertz Communication Systems with Blocking and Directional Antennas", IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1791–1808, 2017. | |
dc.relation.referencesen | 4. J. M. Jornet and I. F. Akyildiz, "Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band", IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3211–221, 2011. | |
dc.relation.referencesen | 5. V. J. Urick, J. D. McKinney and K. J. Williams, Fundamentals of Microwave Photonics. New Jersey, USA: Wiley, 2015. | |
dc.relation.referencesen | 6. Y. A. Kremenetskaya, G. S. Felinsky, Y. V. Melnik, E. A. Bondarenko Print. N. Siakavellas, "Features of the Formation of Millimeter and Terahertz Waveforms", Naukovi Zapysky Ukrayinskoho Naukovo-Doslidnoho Instytutu Zviazku, vol. 3, no. 47, pp. 50–63, 2017. | |
dc.relation.referencesen | 7. G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-Noise Analysis of Optically Generated Millimeter-Wave Signals With External Optical Modulation Techniques", Juornal of Lightwave Technol, no. 24, pp. 4861–4875. 2006. | |
dc.relation.referencesen | 8. J. M. Jornet and I. F. Akyildiz, "Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks," IEEE Transactions on Communications, vol. 62, no. 5, pp. 1742–1754, 2014. | |
dc.relation.referencesen | 9. A. Narayanan, T. V. Sreejith, and R. K. Ganti, "Coverage Analysis in Millimeter Wave Cellular Networks with Reflections", IEEE Global Communications Conference, pp. 1–6, 2017. | |
dc.relation.referencesen | 10. Y. A. Kremenetska, N. V. Gradoboyeva, and S. V. Morozova, "Increase in energy efficiency of millimetres systems by the method of channel gain due to diffraction and reflection" Comparative Analysis of Interference, Noise and Losses in the Mobile… 25 | |
dc.relation.referencesen | 11. H. Shokri-Ghadikolaei and C. Fischione, "Millimeter wave ad hoc networks: Noise-limited or interference-limited?" in Proc. IEEE Global Commun. Workshop, pp. 1–7, San Diego, USA, 2015. | |
dc.relation.referencesen | 12. S. Niknam, B. Natarajan, and H. Mehrpouyan, "A spatial-spectral interference model for millimeter wave 5G applications," in Proc. IEEE 86th Vehicular Technology Conference, pp. 1–5, Toronto, Canada, 2017. | |
dc.relation.referencesen | 13. R. C. Hansen, Hansen R. C. Phased Array Antennas. 2-nd edition. New Jersey, USA: Wiley-Interscience, 2009. | |
dc.relation.referencesen | 14. Y. A. Kremenetskaya, I. O. Lis-kovskiy, and E. R. Zhukova, "Quasi-optical approach to the analysis of the energy model of millimeter wave propagation and antenna characteristics," in Proc. IEEE International Conference on Antenna Theory and Techniques, pp. 395-398, Ukraine, Kyiv, 2017. | |
dc.relation.referencesen | 15. B. Sklar, Digital communications: fundamentals and applications, 2-nd edition. New Jersey, USA: Prentice Hall, 2001. | |
dc.relation.referencesen | 16. L. S. Rothman et al., "Hitran: High-resolution transmission molecular absorption database", https://www.cfa.harvard.edu. | |
dc.relation.referencesen | 17. J. Kokkoniemi, J. Lehtomäki, and M. Juntti, "A discussion on molecular absorption noise in the terahertz band", Juornal of Nano Communication Networks, vol.8, pp. 35–45, 2010. | |
dc.relation.referencesen | 18. J. M. Jornet and I. F. Akyildiz, "Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band", in Proc. IEEE International Conference on Communications, pp. 1–6, Kyoto, Japan, 2011. | |
dc.relation.referencesen | 19. H. Zhao et al., "GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city", in Proc. IEEE International Conference on Communications, pp. 5163–5167, Budapes, Hungary, 2013. | |
dc.relation.referencesen | 20. A. Engelbrecht, Computational intelligence: an introduction. Australia, Sidney: John Wiley & Sons, 2007. | |
dc.relation.referencesen | 21. M. Haenggi and R. K. Ganti, "Interference in Large Wireless Networks", Foundations and Trends® in Networking, vol.473, no 2, pp. 127–248, 2009. | |
dc.relation.referencesen | 22. P. Pinto and M. Win Pinto, "Communication in a Poisson field of interfererspart I: interference distribution and error probability", IEEE Trans. Wireless Commun. vol. 9, no 7, pp. 2176–2186, 2010. | |
dc.relation.uri | https://www.cfa.harvard.edu | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2018 | |
dc.rights.holder | © Kremenetskaya Ya., Markov S., 2018 | |
dc.subject | millimeter wave range | |
dc.subject | wireless communication | |
dc.subject | noise regime | |
dc.subject | directional antennas | |
dc.subject | interference | |
dc.subject | radio link energy budget | |
dc.subject | RoF technology | |
dc.subject | signal to interference ratio | |
dc.subject | signal to noise ratio | |
dc.title | Comparative analysis of interference, noise and losses in the mobile communication systems in millimeter wave range | |
dc.title.alternative | Порівняльний аналіз інтерференції, шуму і втрат в мобільних системах зв’язку міліметрового діапазону хвиль | |
dc.type | Article |
Files
License bundle
1 - 1 of 1