Electromagnetic earthquake precursory signatures in the ULF range: perspectives of the studies

dc.citation.epage57
dc.citation.issue1(30)
dc.citation.journalTitleГеодинаміка
dc.citation.spage48
dc.contributor.affiliationБакинський державний університет
dc.contributor.affiliationНауково-дослідний Проектний Інститут Нафти і Газу
dc.contributor.affiliationBaku State University
dc.contributor.affiliationSOCAR’s Oil and Gas Research and Design Institute
dc.contributor.authorПірієв, Рахман
dc.contributor.authorPiriyev, Rahman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T07:16:21Z
dc.date.available2023-07-03T07:16:21Z
dc.date.created2021-02-23
dc.date.issued2021-02-23
dc.description.abstractІнтерес до досліджень з виявлення провісників землетрусів зростає з кожним роком. В цьому напрямку були виділені результати попередніх досліджень, а потім позитивні результати деяких досліджень, проведених за останні 5 років. Зокрема, при вивченні землетрусів особливу увагу привертають провісники в діапазоні УНЧ. Здійснено порівняння результатів електромагнітних моніторингових досліджень, проведених у діапазоні ULF у попередні роки, і результатів електромагнітних моніторингових досліджень за останні 5 років. Були розглянуті позитивні результати дослідників, які вивчають зміни електромагнітного поля перед землетрусом в діапазоні УНЧ. Наприклад, УНЧ аномалії від відносно слабких (з 4<МW<5) і неглибоких (з глибиною менше 50 км) землетрусів неодноразово спостерігалися в 2017 році в Індонезії. Перед сильними землетрусами виявлені багатообіцяючі УНЧ-провісники землетрусів. Високоамплітудні УНЧ аномалії зафіксовані перед мегаземлетрусом Тохоку в 2011 році, аномальні зміни вектора індукції Землі виявлені на 6- ти обсерваторіях в Японії. Аналогічні аномалії також зафіксовані в діапазоні УНЧ (0,001–0,083 Гц) геомагнітними обсерваторіями Теолойкана і Тусона в США з 1 серпня по 16 вересня 2017 року, до землетрусу в Чьяпасе в Мексиці магнітудою 8,1. Загалом за результатами аналізу численних даних за періоди 1976-2010 і 2007–2016 рр. різними дослідниками виявлено кілька десятків електромагнітних провісників землетрусів з різними амплітудними, спектральними та часовими параметрами. В результаті проведеного аналізу пропонується новий підхід до пошуків електромагнітних провісників землетрусів. Він полягає у вивченні змін геоелектричних полів (потенційних інфранизькочастотних провісників землетрусів) як більш чутливих. Обробка та інтерпретація цих змін може привести до виділення саме провісників землетрусів. Таким чином, ми також зможемо визначити геодинамічні активні зони, в яких можуть статися землетруси.
dc.description.abstractInterest in research on the detection of earthquake (EQ) precursors is growing year by year. In this direction, the paper analysed the results of earlier studies, as well as positive results of some studies conducted in the last 5 years. In particular, during the study of EQs, ultra-low frequency (ULF) precursors attract special attention. The study compared the results of electromagnetic (EM) monitoring studies conducted in the ULF range in earlier years and the results of EM monitoring studies conducted in the last 5 years have been compared. The positive results of the researchers investigating the changes in the EM field before the EQ in the ULF range were reviewed. Thus, ULF anomalies from relatively weak (with 4<Mw<5) and shallow (with a depth of less than 50 km) EQs were repeatedly observed in 2017 in Indonesia. Before strong EQs, ULF promising EQ precursors were revealed. High ULF amplitude anomalies were recorded before the 2011 Tohoku megaEQ. Anomalous changes of the Earth's induction vector were identified in 6 observatories in Japan. Similar anomalies were also recorded in the ULF range (0.001-0.083 Hz) by the Teoloyucan (Mexico) and Tucson (the United States) geomagnetic observatories from August 1 to September 16, 2017, before the Chiapas EQ in Mexico with a magnitude 8.1. On the whole, the research discovered several dozen EM precursors of EQs with different amplitude, spectral and time parameters. The study was based on the analysis of numerous data for the periods 1976–2010 and 2007– 2016 conducted by various researchers. In addition, an original approach is proposed. It consists in the study of geoelectric field changes (ULF precursors of EQs) as they are more sensitive. Processing and interpreting these changes can lead to precise detection of EQ precursors. Thus, this makes it possible to identify geodynamic active zones in which an EQ may occur.
dc.format.extent48-57
dc.format.pages10
dc.identifier.citationPiriyev R. Electromagnetic earthquake precursory signatures in the ULF range: perspectives of the studies / Rahman Piriyev // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 1(30). — P. 48–57.
dc.identifier.citationenPiriyev R. Electromagnetic earthquake precursory signatures in the ULF range: perspectives of the studies / Rahman Piriyev // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 1(30). — P. 48–57.
dc.identifier.doidoi.org/10.23939/jgd2021.01.048
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59346
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(30), 2021
dc.relation.ispartofGeodynamics, 1(30), 2021
dc.relation.referencesArmansyah, & Ahadi, S. (2017). Anomalous
dc.relation.referencesULF signals and their possibility to estimate
dc.relation.referencesthe earthquake magnitude. AIP Conference
dc.relation.referencesProceedings 1857, 020006 (2017); https://doi.org/-10.1063/1.4987048.
dc.relation.referencesAthanasiou, M. A., Anagnostopoulos, G. C., Iliopoulos,
dc.relation.referencesA. C., Pavlos, G. P., & David, C. N. (2011).
dc.relation.referencesEnhanced ULF radion observed by DEMETER
dc.relation.referencestwo months around the strong 2010 Haiti
dc.relation.referencesearthquake. Nat. Hazards Earth Syst. Sci. 2011, 11, 1091–1098.
dc.relation.referencesBertello, I., Piersanti, M., Candidi, M., Diego, P., &
dc.relation.referencesUbertini, P. (2018). Electromagnetic field
dc.relation.referencesobservations by the DEMETER satellite in
dc.relation.referencesconnection with the 2009 L'Aquila earthquake.
dc.relation.referencesAnn. Geophys. 36, 1483–1493.
dc.relation.referencesBhattacharya, S., Sarkar, S., Gwal, A. K., & Parrot, M.
dc.relation.references(2009). Electric and magnetic field perturbations
dc.relation.referencesrecorded by DEMETER satellite before seismic
dc.relation.referencesevents of the 17 th July 2006 M7.7 earthquake in
dc.relation.referencesIndonesia. Journal of Asian Earth Sciences, 34(5): 634-644. DOI: 10.1016/j.jseaes.2008.08.010.
dc.relation.referencesBleçki, J., Parrot, M., & Wronowski, R. (2010).
dc.relation.referencesStudies of the electromagnetic field variations in
dc.relation.referencesELF frequency range registered by DEMETER
dc.relation.referencesover the Sichuan region to the 12 May 2008
dc.relation.referencesearthquake. Int. J. Remote Sens. 31, 3615–3629.
dc.relation.referencesCampbell, W. H. (2009). Natural magnetic disturbance fields, not precursors, preceding the Loma
dc.relation.referencesPrieta earthquake. Journal of Geophysical Research, 114.
dc.relation.referencesCurrie, J. L., & Waters, C. L. (2014). On the use of
dc.relation.referencesgeomagnetic indices and ULF waves for earthquake
dc.relation.referencesprecursor signatures. Geophys. Res. Space Physics, 119, 992–1003, doi:10.1002/2013JA01953.
dc.relation.referencesEftaxias, K., Panin, V., & Deryugin, Y. (2007).
dc.relation.referencesEvolution-EM signals before earthquakes in terms
dc.relation.referencesof meso-mechanics and complexity. Tectonophys,431: 273–300.
dc.relation.referencesEftaxias, K., Balasis, G., Contoyiannis, Y., Papadimitriou, C., Kalimeri, M., Athanasopoulou, L., ...
dc.relation.references& Nomicos, C. (2010). Unfolding the procedure of
dc.relation.referencescharacterizing recorded ultra low frequency, kHZ
dc.relation.referencesand MHz electromagnetic anomalies prior to the
dc.relation.referencesL’Aquila earthquake as pre-seismic ones-Part 2.
dc.relation.referencesNat Haz Earth Sys Sci 10: 275–294.
dc.relation.referencesEnescu, B. D., Enescu, D., Constantin, A. P. (1999).
dc.relation.referencesThe use of electromagnetic data for short-term
dc.relation.referencesprediction of Vrancea (Romania) earthquakes:
dc.relation.referencesPreliminary data. Earth Planets Space 51: 1099–1117.
dc.relation.referencesFebriani, F., Anggono, T., Syuhada, Prasetio, A. D.,
dc.relation.referencesDewi, C. N., Hak, A. S., & Ahadi, S. (2020).
dc.relation.referencesInvestigation of the ultra low frequency (ULF)
dc.relation.referencesgeomagnetic anomalies prior to the Lebak. Banten
dc.relation.referencesearthquake (M=6.1; January 23, 2018). International
dc.relation.referencesconference on trends in material science and inventive
dc.relation.referencesmaterials: ICTMIM 2020. AIP Conference
dc.relation.referencesProceedings 2256, 090002.
dc.relation.referencesFraser-Smith, A. C., A. Bernardi, P. R. McGill, M. E.
dc.relation.referencesLadd, R. A. Helliwell, & O.G. Villard, Jr. (1990).
dc.relation.referencesLow-frequency magnetic field measurements near
dc.relation.referencesthe epicenter of the Ms 7.1 Loma Prieta earthquake,
dc.relation.referencesGeophys. Res. Lett., 17, 1465, 1990.
dc.relation.referencesGokhberg, M., Morgounov, V., Yoshino, T., &
dc.relation.referencesTomizawa, I. (1982). Experimental Measurement
dc.relation.referencesof Electromagnetic Emissions Possibly Related
dc.relation.referencesto Earthquakes in Japan. J Geophys Res 87: 7824–7828.
dc.relation.referencesHan, P., Hattori, K., Hirokawa, M., Zhuang, J.,
dc.relation.referencesChen, C.-H., Febriani, F., Yamaguchi, H.,
dc.relation.referencesYoshino, C., Liu, J.-Y., and Yoshida, S. (2014).
dc.relation.referencesStatistical analysis of ULF seismomagnetic
dc.relation.referencesphenomena at Kakioka, Japan, during 2001–2010,
dc.relation.referencesJ. Geophys. Res. Space Physics, 119, 4998–5011,
dc.relation.referencesdoi:10.1002/2014JA019789.
dc.relation.referencesHayakawa, M. (1997). Electromagnetic precursors of
dc.relation.referencesearthquakes: Review of recent activities, Review
dc.relation.referencesof Radio Science 1993–1996, edited by W. Ross
dc.relation.referencesStone (Oxford Science Publications), 807-818.
dc.relation.referencesHayakawa, M. (Editor) (1999). Atmospheric and
dc.relation.referencesIonospheric Electromagnetic Phenomena Associated
dc.relation.referenceswith Earthquakes (Terra Sci. Pub. Co., Tokyo), p. 996.
dc.relation.referencesHayakawa, M. (2016). Earthquake prediction with
dc.relation.referenceselectromagnetic phenomena. AIP Conference
dc.relation.referencesProceedings 1709, 020002; https://doi.org/10.1063/1.4941201 Published Online: 01 February 2016.
dc.relation.referencesHayakawa, M. (2015). Earthquake prediction with
dc.relation.referencesradio techniques (John Wiley & Sons, Singapore), p. 294.
dc.relation.referencesHayakawa, M. (Editor) (2012). The Frontier of
dc.relation.referencesearthquake prediction studies (Nihon-senmontosho-Shuppan, Tokyo), p. 794.
dc.relation.referencesHayakawa, M. (Editor) (2013). Earthquake prediction
dc.relation.referencesstudies: Seismo Electromagnetics (TERRAPUB,
dc.relation.referencesTokyo), pю 168.
dc.relation.referencesHayakawa, M., and Fujinawa, Y. (1994). Electromagnetic Phenomena Related to Earthquake
dc.relation.referencesPrediction, Terra Scientific Publ., Tokyo, 677 p.
dc.relation.referencesHayakawa, M., Itoh, T., Hattori, K., & Yumoto, K.
dc.relation.references(2000). ULF electromagnetic precursors for an
dc.relation.referencesearthquake at Biak, Indonesia on February 17, 1996. Geophysical Research Letters, Vol. 27,
dc.relation.referencesNo. 10, p. 1531–1534, May 15, 2000.
dc.relation.referencesHayakawa, M., Kawate, R., Molchanov, O., and
dc.relation.referencesYumoto, K. (1996). Results of ultra-low frequency
dc.relation.referencesmagnetic field measurements during the Guam
dc.relation.referencesearthquake of 8 August 1993. Geophys Res Lett 23: 241–244. 48.
dc.relation.referencesHo, Y. Y., Jhuang, H. K., Su, Y. C., and Liu, J. Y.
dc.relation.references(2013a). Seismo-ionospheric anomalies in total
dc.relation.referenceselectron content of the GIM and electron density
dc.relation.referencesof DEMETER before the 27 February 2010 M8.8
dc.relation.referencesChile earthquake. Adv. Space Res. 2013, 51, 2309–2315.
dc.relation.referencesHo, Y. Y., Liu, J. Y., Parrot, M., & Pinçon, J. L.
dc.relation.references(2013b). Temporal and spatial analyses on seismoelectric anomalies associated with the 27 February 2010 M=8.8 Chile earthquake observed by
dc.relation.referencesDEMETER satellite. Nat. Hazards Earth Syst. Sci. 2013, 13, 3281–3289.
dc.relation.referencesKarakelian, D., Klemperer, S. L., Fraser-Smith, A. C.,
dc.relation.referencesand Thompson, G. A. (2002). Ultra-low frequency
dc.relation.referenceselectromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California
dc.relation.referencesearthquake and implications for mechanisms of
dc.relation.referenceselectromagnetic earthquake precursors. Tectonophysics 359 (2002) 65–79.
dc.relation.referencesKopytenko, Y., Ismagilov, V., Hayakawa, M.,
dc.relation.referencesSmirnova, N., Troyan, V., & Peterson, T., (2001).
dc.relation.references“Investigation of ULF electromagnetic phenomena
dc.relation.referencesrelated to earthquakes: Contemporary.achievement
dc.relation.referencesand the perspective”, Ann. Geofis, 44, pp. 325­334.
dc.relation.referencesKopytenko, Yu. A., Matiashivili, T. G., Voronov, P. M.,
dc.relation.referencesKopytenko, E. A., and Molchanov, O. A. (1993).
dc.relation.references“Detection of ultralow-frequency emissions connected
dc.relation.referenceswith the Spitak earthquake and its aftershock activity
dc.relation.referencesbased on geomagnetic pulsations data at Dusheti
dc.relation.referencesand Vardzia observatories”, Phys. Earth Planet.
dc.relation.referencesInter. 77, 85–95.
dc.relation.referencesLiu, J. Y., Chen, Y. I., Huang, C. C., Parrot, M.,
dc.relation.referencesShen, X. H., Pulinets, S. A., Yang, Q. S., &
dc.relation.referencesHo, Y. Y. (2015). A spatial analysis on seismoionospheric anomalies observed by DEMETER
dc.relation.referencesduring the 2008 M8.0 Wenchuan earthquake. J.
dc.relation.referencesAsian Earth Sci. 2015, 114, 414–419.
dc.relation.referencesLouerguioui, S., Gaci, S., and Zaourar, N. (2014).
dc.relation.referencesIrregularities of the ionospheric plasma and the
dc.relation.referencesULF electric components obtained from DEMETER
dc.relation.referencessatellite experiments above Chile earthquake (27
dc.relation.referencesFebruary 2010). Arab. J. Geosci. 8, 2433–2441.
dc.relation.referencesMasci, F., & J. N. Thomas (2015). Are there new
dc.relation.referencesfindings in the search for ULF magnetic precursors
dc.relation.referencesto earthquakes?, J. Geophys. Res. Space Physics, 120, 10, 289–10, 304, doi:10.1002/ 2015JA021336.
dc.relation.referencesMofiz, U. A., & Battiston, R. (2009). Possible ionacoustic solution formation in the ionospheric perturbations observed on DEMETER before the 2007
dc.relation.referencesPu'er earthquake. Earthq. Sci. 2009, 22, 257–262.
dc.relation.referencesMolchanov, A., Kopytenko, A., Voronov, M.,
dc.relation.referencesKopytenko, A., Matiashviali, G., T. G., Fraser–
dc.relation.referencesSmith, A. C., & Bernardi, A. (1992). Results of ULF
dc.relation.referencesmagnetic field measurements near the epicenters
dc.relation.referencesof the Spitak (Ms= 6.9) and Loma-Prieta (Ms= 7.1)
dc.relation.referencesearthquakes: comparative analysis. Geophys Res
dc.relation.referencesLett 19: 1495–1498.
dc.relation.referencesNovruzov, E. S., & Piriyev, R. H. (2015). Efficiency
dc.relation.referencesof magnetotelluric monitoring in the study of
dc.relation.referencesgeodynamic processes. Gorno-geologicheskiy
dc.relation.referencesZhurnal, (3–4), 36–39 (in Russian).
dc.relation.referencesParrot, M., Berthelier, J. J., Lebreton, J. P., Sauvaud,
dc.relation.referencesJ. A., Santolik, O., & Blecki, J. (2006). Examples
dc.relation.referencesof unusual ionospheric observations made by the
dc.relation.referencesDEMETER satellite over seismic regions. Phys.
dc.relation.referencesChem. Earth Parts A/B/C 2006, 31, 486–495.
dc.relation.referencesPiriyev, R. (2021). Effectiveness of electromagnetic
dc.relation.referencesmonitoring in studying earthquakes. Geofizicheskiy
dc.relation.referencesZhurnal, 43(2), 166–177.
dc.relation.referencesPiriyev, R. (2018a). Research and analysis of electromagnetic monitoring. J Environ Geol; 2(1): 29–34.
dc.relation.referencesPiriyev, R. H. (2018b). Analysis of Electromagnetic
dc.relation.referencesMonitoring in Geodynamic Active Areas. Int J
dc.relation.referencesEarth Sci Geophys 4:021.
dc.relation.referencesPisa, D., Parrot, M., & Santolik, O. (2011). Ionospheric
dc.relation.referencesdensity variations recorded before the 2010 Mw8.8
dc.relation.referencesearthquake in Chile. J. Geophys. Res. Space Phys. 2011, 116.
dc.relation.referencesPrattes, G., Schwingenschuh, K., Eichelberger H. U.,
dc.relation.referencesMagnes, W., Boudjada, M., Stachel, M., Vellante, M.,
dc.relation.referencesVillante, U., Wesztergom, V., and Nenovski, P.
dc.relation.references(2011). Ultra low frequency (ULF) European multi
dc.relation.referencesstation magnetic field analysis before and during
dc.relation.referencesthe 2009 earthquake at L'Aquila regarding regional
dc.relation.referencesgeotechnical information. Natural Hazards and
dc.relation.referencesEarth System Sciences, 11, 1959-1968.
dc.relation.referencesRokityansky, I. G., Babak, V. I. & Tereshyn, A. V.
dc.relation.references(2019). Low-Frequency Electromagnetic Signals
dc.relation.referencesObserved before Strong Earthquakes DOI:
dc.relation.referenceshttp://dx.doi.org/10.5772/intechopen.88522. Seismic
dc.relation.referencesWaves – Probing Earth System. Open access peerreviewed chapter. Published: September 27th 2019.
dc.relation.referencesRyu, K., Parrot, M., Kim, S. G., Jeong, K. S., Chae, J.
dc.relation.referencesS., Pulinets, S., & Oyama, K. I. (2014). Suspected
dc.relation.referencesseismo-ionospheric coupling observed by satellite
dc.relation.referencesmeasurements and GPS TEC related to the M7.9
dc.relation.referencesWenchuan earthquake of 12 May 2008. J. Geophys. Res. Space Phys. 2014, 119, 10305–10323.
dc.relation.referencesSarkar, S., & Gwal, A. K. (2010). Satellite monitoring
dc.relation.referencesof anomalous effects in the ionosphere related to
dc.relation.referencesthe great Wenchuan earthquake of May 12, 2008.
dc.relation.referencesNat. Hazards 2010, 55, 321–332.
dc.relation.referencesSaroso, S., Hattori, K., Ishikawa, H., Ida, Y.,
dc.relation.referencesShirogane, R., Hayakawa, M., Yumoto, K.,
dc.relation.referencesShiokawa, K., and Nishihashi, M. (2009). ULF
dc.relation.referencesgeomagnetic anomalous changes possibly associated
dc.relation.referenceswith 2004–2005 Sumatra earthquakes. Physics
dc.relation.referencesand Chemistry of the Earth, Parts A/B/C. 34(6–7), 343–349.
dc.relation.referencesSevgi, L. (2007). A critical review on electromagnetic
dc.relation.referencesprecursors and earthquake prediction. Turk J Elec
dc.relation.referencesEngin, 15(1).
dc.relation.referencesSmirnova, N., Hayakawa, M., and Gotoh, K. (2004).
dc.relation.referencesPrecursory behavior of fractal characteristics of
dc.relation.referencesthe ULF electromagnetic fields in seismic active
dc.relation.referenceszones before strong earthquakes. Phys Chem
dc.relation.referencesEarth 29: 445–451.
dc.relation.referencesSmirnova, N., & Hayakawa, M. (2007). Fractal characteristics of the groundobserved ULF emissions
dc.relation.referencesin relation to geomagnetic and seismic activities. J
dc.relation.referencesAtmos Solar-Terrestrial Phys 69: 1833–1841.
dc.relation.referencesSmith, B., & Johnston, M. (1976). A tectonomagnetic
dc.relation.referenceseffect observed before a magnitude 5.2 earthquake
dc.relation.referencesnear Hollister, California. J Geophys Res 81: 3556–3560.
dc.relation.referencesStănică, D. A, & Stănică, D. (2019). ULF Pre-Seismic
dc.relation.referencesGeomagnetic Anomalous Signal Related to Mw8.1
dc.relation.referencesOffshore Chiapas Earthquake, Mexico on 8 September 2017. Entropy, 21, 29; doi:10.3390/e21010029.
dc.relation.referencesSwati, Birbal Singh, Devbrat Pundhir, Ashwini K. Sinha,
dc.relation.referencesK. Madhusudan Rao, Anirban Guha, & Yashuhide
dc.relation.referencesHobara (2020). Ultra-low frequency (ULF) magnetic
dc.relation.referencesfield emissions associated with some major
dc.relation.referencesearthquakes occurred in Indian Subcontinent. Journal of Atmospheric and Solar-Terrestrial Physics.
dc.relation.referencesVol. 211, December 2020, 105–469.
dc.relation.referencesToader, V. E., Moldovan, I. A., Constantin, I., &
dc.relation.referencesMarmureanu, A. (2017). ULF Radio Monitoring
dc.relation.referencesNetwork in a Seismic Area. Seismic Network,
dc.relation.referencesNational Institute for Earth Physics, Romania.
dc.relation.referencesSession NH4.5/AS4.31/EMRP4.4/SM9.3,
dc.relation.referencesEGU2017-18037, Poster X3.163.
dc.relation.referencesWalker, S. N., Kadirkamanathan, V., & Pokhotelov,
dc.relation.referencesO. A. (2013). Changes in the ultra-low frequency
dc.relation.referenceswave field during the precursor phase to the
dc.relation.referencesSichuan earthquake: DEMETER observations.
dc.relation.referencesAnnales Geophysicae. 31(9), 1597–1603.
dc.relation.referencesXiong, P., Long, C., Zhou, H., Battiston, R., Zhang, X.,
dc.relation.referencesand Shen, X. (2020). Identification of electromagnetic pre-earthquake perturbations from the
dc.relation.referencesDEMETER data by machine learning. Remote
dc.relation.referencesSensing, 12(21), 3643-.doi:10.3390/rs12213643.
dc.relation.referencesYusof, K. A.; Abdullah, M.; Hamid, N. S. A.; Ahadi, S.;
dc.relation.references& Yoshikawa, A. (2021). Correlations between
dc.relation.referencesEarthquake Properties and Characteristics
dc.relation.referencesof Possible ULF Geomagnetic Precursor over
dc.relation.referencesMultiple Earthquakes. Universe 7(1), 20.
dc.relation.referenceshttps://doi.org/10.3390/universe7010020.
dc.relation.referencesZhang, X., Qian, J., Ouyang, X., Shen, X., Cai, J., and
dc.relation.referencesZhao, S. (2009a). Ionospheric electromagnetic perturbations observed on DEMETER satellite before Chile
dc.relation.referencesM7.9 earthquake. Earthq. Sci. 2009, 22, 251–255.
dc.relation.referencesZhang, X., Shen, X., Liu, J., Ouyang, X., Qian, J., and
dc.relation.referencesZhao, S. (2009b). Analysis of ionospheric plasma
dc.relation.referencesperturbations before Wenchuan earthquake. Nat.
dc.relation.referencesHazards Earth Syst. Sci. 9, 1259–1266.
dc.relation.referencesenArmansyah, & Ahadi, S. (2017). Anomalous
dc.relation.referencesenULF signals and their possibility to estimate
dc.relation.referencesenthe earthquake magnitude. AIP Conference
dc.relation.referencesenProceedings 1857, 020006 (2017); https://doi.org/-10.1063/1.4987048.
dc.relation.referencesenAthanasiou, M. A., Anagnostopoulos, G. C., Iliopoulos,
dc.relation.referencesenA. C., Pavlos, G. P., & David, C. N. (2011).
dc.relation.referencesenEnhanced ULF radion observed by DEMETER
dc.relation.referencesentwo months around the strong 2010 Haiti
dc.relation.referencesenearthquake. Nat. Hazards Earth Syst. Sci. 2011, 11, 1091–1098.
dc.relation.referencesenBertello, I., Piersanti, M., Candidi, M., Diego, P., &
dc.relation.referencesenUbertini, P. (2018). Electromagnetic field
dc.relation.referencesenobservations by the DEMETER satellite in
dc.relation.referencesenconnection with the 2009 L'Aquila earthquake.
dc.relation.referencesenAnn. Geophys. 36, 1483–1493.
dc.relation.referencesenBhattacharya, S., Sarkar, S., Gwal, A. K., & Parrot, M.
dc.relation.referencesen(2009). Electric and magnetic field perturbations
dc.relation.referencesenrecorded by DEMETER satellite before seismic
dc.relation.referencesenevents of the 17 th July 2006 M7.7 earthquake in
dc.relation.referencesenIndonesia. Journal of Asian Earth Sciences, 34(5): 634-644. DOI: 10.1016/j.jseaes.2008.08.010.
dc.relation.referencesenBleçki, J., Parrot, M., & Wronowski, R. (2010).
dc.relation.referencesenStudies of the electromagnetic field variations in
dc.relation.referencesenELF frequency range registered by DEMETER
dc.relation.referencesenover the Sichuan region to the 12 May 2008
dc.relation.referencesenearthquake. Int. J. Remote Sens. 31, 3615–3629.
dc.relation.referencesenCampbell, W. H. (2009). Natural magnetic disturbance fields, not precursors, preceding the Loma
dc.relation.referencesenPrieta earthquake. Journal of Geophysical Research, 114.
dc.relation.referencesenCurrie, J. L., & Waters, C. L. (2014). On the use of
dc.relation.referencesengeomagnetic indices and ULF waves for earthquake
dc.relation.referencesenprecursor signatures. Geophys. Res. Space Physics, 119, 992–1003, doi:10.1002/2013JA01953.
dc.relation.referencesenEftaxias, K., Panin, V., & Deryugin, Y. (2007).
dc.relation.referencesenEvolution-EM signals before earthquakes in terms
dc.relation.referencesenof meso-mechanics and complexity. Tectonophys,431: 273–300.
dc.relation.referencesenEftaxias, K., Balasis, G., Contoyiannis, Y., Papadimitriou, C., Kalimeri, M., Athanasopoulou, L., ...
dc.relation.referencesen& Nomicos, C. (2010). Unfolding the procedure of
dc.relation.referencesencharacterizing recorded ultra low frequency, kHZ
dc.relation.referencesenand MHz electromagnetic anomalies prior to the
dc.relation.referencesenL’Aquila earthquake as pre-seismic ones-Part 2.
dc.relation.referencesenNat Haz Earth Sys Sci 10: 275–294.
dc.relation.referencesenEnescu, B. D., Enescu, D., Constantin, A. P. (1999).
dc.relation.referencesenThe use of electromagnetic data for short-term
dc.relation.referencesenprediction of Vrancea (Romania) earthquakes:
dc.relation.referencesenPreliminary data. Earth Planets Space 51: 1099–1117.
dc.relation.referencesenFebriani, F., Anggono, T., Syuhada, Prasetio, A. D.,
dc.relation.referencesenDewi, C. N., Hak, A. S., & Ahadi, S. (2020).
dc.relation.referencesenInvestigation of the ultra low frequency (ULF)
dc.relation.referencesengeomagnetic anomalies prior to the Lebak. Banten
dc.relation.referencesenearthquake (M=6.1; January 23, 2018). International
dc.relation.referencesenconference on trends in material science and inventive
dc.relation.referencesenmaterials: ICTMIM 2020. AIP Conference
dc.relation.referencesenProceedings 2256, 090002.
dc.relation.referencesenFraser-Smith, A. C., A. Bernardi, P. R. McGill, M. E.
dc.relation.referencesenLadd, R. A. Helliwell, & O.G. Villard, Jr. (1990).
dc.relation.referencesenLow-frequency magnetic field measurements near
dc.relation.referencesenthe epicenter of the Ms 7.1 Loma Prieta earthquake,
dc.relation.referencesenGeophys. Res. Lett., 17, 1465, 1990.
dc.relation.referencesenGokhberg, M., Morgounov, V., Yoshino, T., &
dc.relation.referencesenTomizawa, I. (1982). Experimental Measurement
dc.relation.referencesenof Electromagnetic Emissions Possibly Related
dc.relation.referencesento Earthquakes in Japan. J Geophys Res 87: 7824–7828.
dc.relation.referencesenHan, P., Hattori, K., Hirokawa, M., Zhuang, J.,
dc.relation.referencesenChen, C.-H., Febriani, F., Yamaguchi, H.,
dc.relation.referencesenYoshino, C., Liu, J.-Y., and Yoshida, S. (2014).
dc.relation.referencesenStatistical analysis of ULF seismomagnetic
dc.relation.referencesenphenomena at Kakioka, Japan, during 2001–2010,
dc.relation.referencesenJ. Geophys. Res. Space Physics, 119, 4998–5011,
dc.relation.referencesendoi:10.1002/2014JA019789.
dc.relation.referencesenHayakawa, M. (1997). Electromagnetic precursors of
dc.relation.referencesenearthquakes: Review of recent activities, Review
dc.relation.referencesenof Radio Science 1993–1996, edited by W. Ross
dc.relation.referencesenStone (Oxford Science Publications), 807-818.
dc.relation.referencesenHayakawa, M. (Editor) (1999). Atmospheric and
dc.relation.referencesenIonospheric Electromagnetic Phenomena Associated
dc.relation.referencesenwith Earthquakes (Terra Sci. Pub. Co., Tokyo), p. 996.
dc.relation.referencesenHayakawa, M. (2016). Earthquake prediction with
dc.relation.referencesenelectromagnetic phenomena. AIP Conference
dc.relation.referencesenProceedings 1709, 020002; https://doi.org/10.1063/1.4941201 Published Online: 01 February 2016.
dc.relation.referencesenHayakawa, M. (2015). Earthquake prediction with
dc.relation.referencesenradio techniques (John Wiley & Sons, Singapore), p. 294.
dc.relation.referencesenHayakawa, M. (Editor) (2012). The Frontier of
dc.relation.referencesenearthquake prediction studies (Nihon-senmontosho-Shuppan, Tokyo), p. 794.
dc.relation.referencesenHayakawa, M. (Editor) (2013). Earthquake prediction
dc.relation.referencesenstudies: Seismo Electromagnetics (TERRAPUB,
dc.relation.referencesenTokyo), piu 168.
dc.relation.referencesenHayakawa, M., and Fujinawa, Y. (1994). Electromagnetic Phenomena Related to Earthquake
dc.relation.referencesenPrediction, Terra Scientific Publ., Tokyo, 677 p.
dc.relation.referencesenHayakawa, M., Itoh, T., Hattori, K., & Yumoto, K.
dc.relation.referencesen(2000). ULF electromagnetic precursors for an
dc.relation.referencesenearthquake at Biak, Indonesia on February 17, 1996. Geophysical Research Letters, Vol. 27,
dc.relation.referencesenNo. 10, p. 1531–1534, May 15, 2000.
dc.relation.referencesenHayakawa, M., Kawate, R., Molchanov, O., and
dc.relation.referencesenYumoto, K. (1996). Results of ultra-low frequency
dc.relation.referencesenmagnetic field measurements during the Guam
dc.relation.referencesenearthquake of 8 August 1993. Geophys Res Lett 23: 241–244. 48.
dc.relation.referencesenHo, Y. Y., Jhuang, H. K., Su, Y. C., and Liu, J. Y.
dc.relation.referencesen(2013a). Seismo-ionospheric anomalies in total
dc.relation.referencesenelectron content of the GIM and electron density
dc.relation.referencesenof DEMETER before the 27 February 2010 M8.8
dc.relation.referencesenChile earthquake. Adv. Space Res. 2013, 51, 2309–2315.
dc.relation.referencesenHo, Y. Y., Liu, J. Y., Parrot, M., & Pinçon, J. L.
dc.relation.referencesen(2013b). Temporal and spatial analyses on seismoelectric anomalies associated with the 27 February 2010 M=8.8 Chile earthquake observed by
dc.relation.referencesenDEMETER satellite. Nat. Hazards Earth Syst. Sci. 2013, 13, 3281–3289.
dc.relation.referencesenKarakelian, D., Klemperer, S. L., Fraser-Smith, A. C.,
dc.relation.referencesenand Thompson, G. A. (2002). Ultra-low frequency
dc.relation.referencesenelectromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California
dc.relation.referencesenearthquake and implications for mechanisms of
dc.relation.referencesenelectromagnetic earthquake precursors. Tectonophysics 359 (2002) 65–79.
dc.relation.referencesenKopytenko, Y., Ismagilov, V., Hayakawa, M.,
dc.relation.referencesenSmirnova, N., Troyan, V., & Peterson, T., (2001).
dc.relation.referencesen"Investigation of ULF electromagnetic phenomena
dc.relation.referencesenrelated to earthquakes: Contemporary.achievement
dc.relation.referencesenand the perspective", Ann. Geofis, 44, pp. 325­334.
dc.relation.referencesenKopytenko, Yu. A., Matiashivili, T. G., Voronov, P. M.,
dc.relation.referencesenKopytenko, E. A., and Molchanov, O. A. (1993).
dc.relation.referencesen"Detection of ultralow-frequency emissions connected
dc.relation.referencesenwith the Spitak earthquake and its aftershock activity
dc.relation.referencesenbased on geomagnetic pulsations data at Dusheti
dc.relation.referencesenand Vardzia observatories", Phys. Earth Planet.
dc.relation.referencesenInter. 77, 85–95.
dc.relation.referencesenLiu, J. Y., Chen, Y. I., Huang, C. C., Parrot, M.,
dc.relation.referencesenShen, X. H., Pulinets, S. A., Yang, Q. S., &
dc.relation.referencesenHo, Y. Y. (2015). A spatial analysis on seismoionospheric anomalies observed by DEMETER
dc.relation.referencesenduring the 2008 M8.0 Wenchuan earthquake. J.
dc.relation.referencesenAsian Earth Sci. 2015, 114, 414–419.
dc.relation.referencesenLouerguioui, S., Gaci, S., and Zaourar, N. (2014).
dc.relation.referencesenIrregularities of the ionospheric plasma and the
dc.relation.referencesenULF electric components obtained from DEMETER
dc.relation.referencesensatellite experiments above Chile earthquake (27
dc.relation.referencesenFebruary 2010). Arab. J. Geosci. 8, 2433–2441.
dc.relation.referencesenMasci, F., & J. N. Thomas (2015). Are there new
dc.relation.referencesenfindings in the search for ULF magnetic precursors
dc.relation.referencesento earthquakes?, J. Geophys. Res. Space Physics, 120, 10, 289–10, 304, doi:10.1002/ 2015JA021336.
dc.relation.referencesenMofiz, U. A., & Battiston, R. (2009). Possible ionacoustic solution formation in the ionospheric perturbations observed on DEMETER before the 2007
dc.relation.referencesenPu'er earthquake. Earthq. Sci. 2009, 22, 257–262.
dc.relation.referencesenMolchanov, A., Kopytenko, A., Voronov, M.,
dc.relation.referencesenKopytenko, A., Matiashviali, G., T. G., Fraser–
dc.relation.referencesenSmith, A. C., & Bernardi, A. (1992). Results of ULF
dc.relation.referencesenmagnetic field measurements near the epicenters
dc.relation.referencesenof the Spitak (Ms= 6.9) and Loma-Prieta (Ms= 7.1)
dc.relation.referencesenearthquakes: comparative analysis. Geophys Res
dc.relation.referencesenLett 19: 1495–1498.
dc.relation.referencesenNovruzov, E. S., & Piriyev, R. H. (2015). Efficiency
dc.relation.referencesenof magnetotelluric monitoring in the study of
dc.relation.referencesengeodynamic processes. Gorno-geologicheskiy
dc.relation.referencesenZhurnal, (3–4), 36–39 (in Russian).
dc.relation.referencesenParrot, M., Berthelier, J. J., Lebreton, J. P., Sauvaud,
dc.relation.referencesenJ. A., Santolik, O., & Blecki, J. (2006). Examples
dc.relation.referencesenof unusual ionospheric observations made by the
dc.relation.referencesenDEMETER satellite over seismic regions. Phys.
dc.relation.referencesenChem. Earth Parts A/B/P. 2006, 31, 486–495.
dc.relation.referencesenPiriyev, R. (2021). Effectiveness of electromagnetic
dc.relation.referencesenmonitoring in studying earthquakes. Geofizicheskiy
dc.relation.referencesenZhurnal, 43(2), 166–177.
dc.relation.referencesenPiriyev, R. (2018a). Research and analysis of electromagnetic monitoring. J Environ Geol; 2(1): 29–34.
dc.relation.referencesenPiriyev, R. H. (2018b). Analysis of Electromagnetic
dc.relation.referencesenMonitoring in Geodynamic Active Areas. Int J
dc.relation.referencesenEarth Sci Geophys 4:021.
dc.relation.referencesenPisa, D., Parrot, M., & Santolik, O. (2011). Ionospheric
dc.relation.referencesendensity variations recorded before the 2010 Mw8.8
dc.relation.referencesenearthquake in Chile. J. Geophys. Res. Space Phys. 2011, 116.
dc.relation.referencesenPrattes, G., Schwingenschuh, K., Eichelberger H. U.,
dc.relation.referencesenMagnes, W., Boudjada, M., Stachel, M., Vellante, M.,
dc.relation.referencesenVillante, U., Wesztergom, V., and Nenovski, P.
dc.relation.referencesen(2011). Ultra low frequency (ULF) European multi
dc.relation.referencesenstation magnetic field analysis before and during
dc.relation.referencesenthe 2009 earthquake at L'Aquila regarding regional
dc.relation.referencesengeotechnical information. Natural Hazards and
dc.relation.referencesenEarth System Sciences, 11, 1959-1968.
dc.relation.referencesenRokityansky, I. G., Babak, V. I. & Tereshyn, A. V.
dc.relation.referencesen(2019). Low-Frequency Electromagnetic Signals
dc.relation.referencesenObserved before Strong Earthquakes DOI:
dc.relation.referencesenhttp://dx.doi.org/10.5772/intechopen.88522. Seismic
dc.relation.referencesenWaves – Probing Earth System. Open access peerreviewed chapter. Published: September 27th 2019.
dc.relation.referencesenRyu, K., Parrot, M., Kim, S. G., Jeong, K. S., Chae, J.
dc.relation.referencesenS., Pulinets, S., & Oyama, K. I. (2014). Suspected
dc.relation.referencesenseismo-ionospheric coupling observed by satellite
dc.relation.referencesenmeasurements and GPS TEC related to the M7.9
dc.relation.referencesenWenchuan earthquake of 12 May 2008. J. Geophys. Res. Space Phys. 2014, 119, 10305–10323.
dc.relation.referencesenSarkar, S., & Gwal, A. K. (2010). Satellite monitoring
dc.relation.referencesenof anomalous effects in the ionosphere related to
dc.relation.referencesenthe great Wenchuan earthquake of May 12, 2008.
dc.relation.referencesenNat. Hazards 2010, 55, 321–332.
dc.relation.referencesenSaroso, S., Hattori, K., Ishikawa, H., Ida, Y.,
dc.relation.referencesenShirogane, R., Hayakawa, M., Yumoto, K.,
dc.relation.referencesenShiokawa, K., and Nishihashi, M. (2009). ULF
dc.relation.referencesengeomagnetic anomalous changes possibly associated
dc.relation.referencesenwith 2004–2005 Sumatra earthquakes. Physics
dc.relation.referencesenand Chemistry of the Earth, Parts A/B/P. 34(6–7), 343–349.
dc.relation.referencesenSevgi, L. (2007). A critical review on electromagnetic
dc.relation.referencesenprecursors and earthquake prediction. Turk J Elec
dc.relation.referencesenEngin, 15(1).
dc.relation.referencesenSmirnova, N., Hayakawa, M., and Gotoh, K. (2004).
dc.relation.referencesenPrecursory behavior of fractal characteristics of
dc.relation.referencesenthe ULF electromagnetic fields in seismic active
dc.relation.referencesenzones before strong earthquakes. Phys Chem
dc.relation.referencesenEarth 29: 445–451.
dc.relation.referencesenSmirnova, N., & Hayakawa, M. (2007). Fractal characteristics of the groundobserved ULF emissions
dc.relation.referencesenin relation to geomagnetic and seismic activities. J
dc.relation.referencesenAtmos Solar-Terrestrial Phys 69: 1833–1841.
dc.relation.referencesenSmith, B., & Johnston, M. (1976). A tectonomagnetic
dc.relation.referenceseneffect observed before a magnitude 5.2 earthquake
dc.relation.referencesennear Hollister, California. J Geophys Res 81: 3556–3560.
dc.relation.referencesenStănică, D. A, & Stănică, D. (2019). ULF Pre-Seismic
dc.relation.referencesenGeomagnetic Anomalous Signal Related to Mw8.1
dc.relation.referencesenOffshore Chiapas Earthquake, Mexico on 8 September 2017. Entropy, 21, 29; doi:10.3390/e21010029.
dc.relation.referencesenSwati, Birbal Singh, Devbrat Pundhir, Ashwini K. Sinha,
dc.relation.referencesenK. Madhusudan Rao, Anirban Guha, & Yashuhide
dc.relation.referencesenHobara (2020). Ultra-low frequency (ULF) magnetic
dc.relation.referencesenfield emissions associated with some major
dc.relation.referencesenearthquakes occurred in Indian Subcontinent. Journal of Atmospheric and Solar-Terrestrial Physics.
dc.relation.referencesenVol. 211, December 2020, 105–469.
dc.relation.referencesenToader, V. E., Moldovan, I. A., Constantin, I., &
dc.relation.referencesenMarmureanu, A. (2017). ULF Radio Monitoring
dc.relation.referencesenNetwork in a Seismic Area. Seismic Network,
dc.relation.referencesenNational Institute for Earth Physics, Romania.
dc.relation.referencesenSession NH4.5/AS4.31/EMRP4.4/SM9.3,
dc.relation.referencesenEGU2017-18037, Poster X3.163.
dc.relation.referencesenWalker, S. N., Kadirkamanathan, V., & Pokhotelov,
dc.relation.referencesenO. A. (2013). Changes in the ultra-low frequency
dc.relation.referencesenwave field during the precursor phase to the
dc.relation.referencesenSichuan earthquake: DEMETER observations.
dc.relation.referencesenAnnales Geophysicae. 31(9), 1597–1603.
dc.relation.referencesenXiong, P., Long, C., Zhou, H., Battiston, R., Zhang, X.,
dc.relation.referencesenand Shen, X. (2020). Identification of electromagnetic pre-earthquake perturbations from the
dc.relation.referencesenDEMETER data by machine learning. Remote
dc.relation.referencesenSensing, 12(21), 3643-.doi:10.3390/rs12213643.
dc.relation.referencesenYusof, K. A.; Abdullah, M.; Hamid, N. S. A.; Ahadi, S.;
dc.relation.referencesen& Yoshikawa, A. (2021). Correlations between
dc.relation.referencesenEarthquake Properties and Characteristics
dc.relation.referencesenof Possible ULF Geomagnetic Precursor over
dc.relation.referencesenMultiple Earthquakes. Universe 7(1), 20.
dc.relation.referencesenhttps://doi.org/10.3390/universe7010020.
dc.relation.referencesenZhang, X., Qian, J., Ouyang, X., Shen, X., Cai, J., and
dc.relation.referencesenZhao, S. (2009a). Ionospheric electromagnetic perturbations observed on DEMETER satellite before Chile
dc.relation.referencesenM7.9 earthquake. Earthq. Sci. 2009, 22, 251–255.
dc.relation.referencesenZhang, X., Shen, X., Liu, J., Ouyang, X., Qian, J., and
dc.relation.referencesenZhao, S. (2009b). Analysis of ionospheric plasma
dc.relation.referencesenperturbations before Wenchuan earthquake. Nat.
dc.relation.referencesenHazards Earth Syst. Sci. 9, 1259–1266.
dc.relation.urihttps://doi.org/-10.1063/1.4987048
dc.relation.urihttps://doi.org/10.1063/1.4941201
dc.relation.urihttp://dx.doi.org/10.5772/intechopen.88522
dc.relation.urihttps://doi.org/10.3390/universe7010020
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2021
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2021
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Piriyev Rahman
dc.subjectземлетрус
dc.subjectпровісник
dc.subjectаномальні ультранизькочастотні (УНЧ) сигнали
dc.subjectелектромагнітне випромінювання
dc.subjectповна провідність
dc.subjectEQ
dc.subjectprecursors
dc.subjectULF
dc.subjectEM
dc.subjectadmittance
dc.subjectLF
dc.titleElectromagnetic earthquake precursory signatures in the ULF range: perspectives of the studies
dc.title.alternativeЕлектромагнітні провісники землетрусів в діапазоні УНЧ і НЧ: перспективи досліджень
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021n1_30__Piriyev_R-Electromagnetic_earthquake_48-57.pdf
Size:
469.57 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021n1_30__Piriyev_R-Electromagnetic_earthquake_48-57__COVER.png
Size:
528.34 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: