Thermomechanical behavior of a solid electroconductive ball under the action of amplitude modulated radioimpulse
dc.citation.epage | 439 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 431 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Мусій, Р. С. | |
dc.contributor.author | Мельник, Н. Б. | |
dc.contributor.author | Дрогомирецька, Х. Т. | |
dc.contributor.author | Дужа-Задорожна, М. П. | |
dc.contributor.author | Дружбяк, С. В. | |
dc.contributor.author | Musii, R. S. | |
dc.contributor.author | Melnyk, N. B. | |
dc.contributor.author | Drohomyretska, Kh. T. | |
dc.contributor.author | Duza-Zadorozhna, M. P. | |
dc.contributor.author | Druzhbiak, S. V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:14:25Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Запропоновано фізико-математичну модель визначення термонапруженого стану електропровідної суцільної кулі за дії амплітудно модульованого радіоімпульсу. Сформульовано центрально-симетричну задачу термомеханіки для розглядуваної кулі. За визначальні функції вибрано азимутальну компоненту вектора напруженості магнітного поля, температуру та радіальну компоненту вектора переміщень. Для побудови розв’язків сформульованих складових початково-крайових задач електродинаміки, теплопровідності і термопружності використано поліноміальну апроксимацію визначальних функцій за радіальною змінною. У результаті вихідні початковокрайові задачі на визначальні функції зведено до відповідних задач Коші на інтегральні за радіальною змінною характеристики цих функцій. Отримано загальні розв’язки задач Коші за однорідної нестаціонарної електромагнітної дії. На основі цих розв’язків чисельно проаналізовано зміну в часі тепла Джоуля, пондеромоторної сили, температури і напружень у кулі за дії амплітудно модульованого радіоімпульсу залежно від його амплітудно-частотних характеристик і тривалості. | |
dc.description.abstract | A physical and mathematical model for determining the thermostressed state of an electroconductive solid ball under the action of an amplitude modulated radioimpulse is proposed. The centrally symmetric problem of thermomechanics for the considered ball is formulated. The azimuthal component of the magnetic field strength vector, temperature, and the radial component of the displacement vector were chosen as the determining functions. To construct solutions of the formulated components of the initial-boundary value problems of electrodynamics, heat conductivity, and thermoelasticity, a polynomial approximation of the determining functions over the radial variable is used. As a result, the initial-boundary value problems on the determining functions are reduced to the corresponding Cauchy problems on the integral characteristics of these functions over the radial variable. General solutions of Cauchy problems under homogeneous nonstationary electromagnetic action are obtained. Based on these solutions, the change in time of Joule heat, ponderomotor force, temperature and stresses in the ball under the action of amplitude-modulated radioimpulse depending on its amplitude-frequency characteristics and duration is numerically analyzed. | |
dc.format.extent | 431-439 | |
dc.format.pages | 9 | |
dc.identifier.citation | Thermomechanical behavior of a solid electroconductive ball under the action of amplitude modulated radioimpulse / R. S. Musii, N. B. Melnyk, Kh. T. Drohomyretska, M. P. Duza-Zadorozhna, S. V. Druzhbiak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 431–439. | |
dc.identifier.citationen | Thermomechanical behavior of a solid electroconductive ball under the action of amplitude modulated radioimpulse / R. S. Musii, N. B. Melnyk, Kh. T. Drohomyretska, M. P. Duza-Zadorozhna, S. V. Druzhbiak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 431–439. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.02.431 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63443 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 2 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (9), 2022 | |
dc.relation.references | [1] Podstrigach Ya. S., Burak Ya. I., Gachkevich A. R., Chernyavskaya L. V. Thermoelasticity of electrically conductive bodies. Kiev, Naukova Dumka (1977), (in Russian). | |
dc.relation.references | [2] Gachkevich A. R. Thermomechanics of electrically conductive bodies under the influence of quasiestablished electromagnetic fields. Kiev, Naukova Dumka (1992), (in Russian). | |
dc.relation.references | [3] Hachkevych O. R., Drobenko B. D., Vankevych P. I., Yakovlev M. Y. Optimization of the HighTemperature Induction Treatment Modes for Nonlinear Electroconductive Bodies. Strength of Materials. 49 (3), 429–435 (2017). | |
dc.relation.references | [4] Zhuravchak L. M., Kruk O. S. Consideration of the nonlinear behavior of environmental material and a three-dimensional internal heat sources in mathematical modeling of heat conduction. Mathematical Modeling and Computing. 2 (1), 107–113 (2015). | |
dc.relation.references | [5] Hachkevych O., Musij R. Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude. Mathematical Modeling and Computing. 6 (1), 30–36 (2019). | |
dc.relation.references | [6] Hachkevych O. R., Musij R. S., Tarlakovskyi D. V. The thermomechanics of nonferromagnetic conductive bodies for the actions of pulsed electromagnetic fields with amplitude modulation. Lviv, SPOLOM (2011), (in Ukranian). | |
dc.relation.references | [7] Musii R. S., Nakonechnyy A. Y. Mathematical model for temperature estimation forecasting of electrically conductive plate elements under action of pulsed electromagnetic radiation of radio-frequency range. Mathematical Modeling and Computing. 8 (1), 35–42 (2021). | |
dc.relation.references | [8] Musii R., Melnyk N., Dmytruk V., Bilyk O., Kushka B., Shayner H. Modeling and calculation of the temperature-force regime of functioning of an electrical conductive spherical sensor under the action of an amplitude-modulated radio pulse. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). 1–4 (2019). | |
dc.relation.references | [9] Musii R., Melnyk N., Drohomyretska K., Dmytruk V., Marikutza U., Nakonechny R. Modeling and calculation of the temperature-force regime of functioning of a electrically conductive cylindrical sensor under the pulsed electromagnetic action in the mode of the damped sinusoid. 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). 101–104 (2019). | |
dc.relation.references | [10] Musii R. S., Melnyk N. B., Dmytruk V. A., Zhydyk U. V. Technological forecast of bearing capacity and properties of contact connection of bimetallic hollow actionspheres under electromagnetic pulses. Mathematical Modeling and Computing. 7 (1), 79–87 (2020). | |
dc.relation.references | [11] Musii R. S., Melnyk N. B., Drohomyretska K. T., Zakaulova J. V. Thermomechanical behavior of an electrically conductive cylindrical implant under the action of external unstable electromagnetic fields. Mathematical Modeling and Computing. 8 (2), 184–191 (2021). | |
dc.relation.references | [12] Gribanov V. F. Panichkin N. G. Connected and dynamic problems of thermoelasticity. Moscow, Mashinostroenie (1984), (in Russian). | |
dc.relation.references | [13] Podstrigach Ya. S., Kolyano Yu. M. Generalized thermomechanics. Кiev, Naukova dumka (1976), (in Russian). | |
dc.relation.references | [14] Musij R. S. Dynamic problem of thermomechanics for conductive bodies of canonical form. Lviv, Rastr-7 (2010), (in Ukranian). | |
dc.relation.references | [15] Batygin Yu. V., Lavinsky V. I., Himenko L. T. Impulse magnetic fields for advanced technologies. Harkov, MOST-Tornado (2003), (in Russian). | |
dc.relation.references | [16] Gonorovsky I. S. Radio engineering circuits and signals. Moscow, Radio and communication (1986), (in Russian). | |
dc.relation.referencesen | [1] Podstrigach Ya. S., Burak Ya. I., Gachkevich A. R., Chernyavskaya L. V. Thermoelasticity of electrically conductive bodies. Kiev, Naukova Dumka (1977), (in Russian). | |
dc.relation.referencesen | [2] Gachkevich A. R. Thermomechanics of electrically conductive bodies under the influence of quasiestablished electromagnetic fields. Kiev, Naukova Dumka (1992), (in Russian). | |
dc.relation.referencesen | [3] Hachkevych O. R., Drobenko B. D., Vankevych P. I., Yakovlev M. Y. Optimization of the HighTemperature Induction Treatment Modes for Nonlinear Electroconductive Bodies. Strength of Materials. 49 (3), 429–435 (2017). | |
dc.relation.referencesen | [4] Zhuravchak L. M., Kruk O. S. Consideration of the nonlinear behavior of environmental material and a three-dimensional internal heat sources in mathematical modeling of heat conduction. Mathematical Modeling and Computing. 2 (1), 107–113 (2015). | |
dc.relation.referencesen | [5] Hachkevych O., Musij R. Mathematical modeling in thermomechanics of electroconductive bodies under the action of the pulsed electromagnetic fields with modulation of amplitude. Mathematical Modeling and Computing. 6 (1), 30–36 (2019). | |
dc.relation.referencesen | [6] Hachkevych O. R., Musij R. S., Tarlakovskyi D. V. The thermomechanics of nonferromagnetic conductive bodies for the actions of pulsed electromagnetic fields with amplitude modulation. Lviv, SPOLOM (2011), (in Ukranian). | |
dc.relation.referencesen | [7] Musii R. S., Nakonechnyy A. Y. Mathematical model for temperature estimation forecasting of electrically conductive plate elements under action of pulsed electromagnetic radiation of radio-frequency range. Mathematical Modeling and Computing. 8 (1), 35–42 (2021). | |
dc.relation.referencesen | [8] Musii R., Melnyk N., Dmytruk V., Bilyk O., Kushka B., Shayner H. Modeling and calculation of the temperature-force regime of functioning of an electrical conductive spherical sensor under the action of an amplitude-modulated radio pulse. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). 1–4 (2019). | |
dc.relation.referencesen | [9] Musii R., Melnyk N., Drohomyretska K., Dmytruk V., Marikutza U., Nakonechny R. Modeling and calculation of the temperature-force regime of functioning of a electrically conductive cylindrical sensor under the pulsed electromagnetic action in the mode of the damped sinusoid. 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). 101–104 (2019). | |
dc.relation.referencesen | [10] Musii R. S., Melnyk N. B., Dmytruk V. A., Zhydyk U. V. Technological forecast of bearing capacity and properties of contact connection of bimetallic hollow actionspheres under electromagnetic pulses. Mathematical Modeling and Computing. 7 (1), 79–87 (2020). | |
dc.relation.referencesen | [11] Musii R. S., Melnyk N. B., Drohomyretska K. T., Zakaulova J. V. Thermomechanical behavior of an electrically conductive cylindrical implant under the action of external unstable electromagnetic fields. Mathematical Modeling and Computing. 8 (2), 184–191 (2021). | |
dc.relation.referencesen | [12] Gribanov V. F. Panichkin N. G. Connected and dynamic problems of thermoelasticity. Moscow, Mashinostroenie (1984), (in Russian). | |
dc.relation.referencesen | [13] Podstrigach Ya. S., Kolyano Yu. M. Generalized thermomechanics. Kiev, Naukova dumka (1976), (in Russian). | |
dc.relation.referencesen | [14] Musij R. S. Dynamic problem of thermomechanics for conductive bodies of canonical form. Lviv, Rastr-7 (2010), (in Ukranian). | |
dc.relation.referencesen | [15] Batygin Yu. V., Lavinsky V. I., Himenko L. T. Impulse magnetic fields for advanced technologies. Harkov, MOST-Tornado (2003), (in Russian). | |
dc.relation.referencesen | [16] Gonorovsky I. S. Radio engineering circuits and signals. Moscow, Radio and communication (1986), (in Russian). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | суцільна електропровідна куля | |
dc.subject | радіоімпульс | |
dc.subject | термонапружений стан | |
dc.subject | solid electroconductive ball | |
dc.subject | radioimpulse | |
dc.subject | thermal stress state | |
dc.title | Thermomechanical behavior of a solid electroconductive ball under the action of amplitude modulated radioimpulse | |
dc.title.alternative | Термомеханічна поведінка суцільної електропровідної кулі за дії амплітудно модульованого радіоімпульсу | |
dc.type | Article |
Files
License bundle
1 - 1 of 1