On the external and internal resonance phenomena of the elastic bodies with the complex oscillations

dc.citation.epage158
dc.citation.issue1
dc.citation.spage152
dc.contributor.affiliationНаціональна академія сухопутних військ імені гетьмана Петра Сагайдачного
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationHetman Petro Sahaidachnyi National Army Academy
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГузик, Н.
dc.contributor.authorПукач, П.
dc.contributor.authorСокіл, Б.
dc.contributor.authorСокіл, М.
dc.contributor.authorВовк, М.
dc.contributor.authorHuzyk, N.
dc.contributor.authorPukach, P.
dc.contributor.authorSokil, B.
dc.contributor.authorSokil, M.
dc.contributor.authorVovk, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-12-13T09:11:01Z
dc.date.available2023-12-13T09:11:01Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractСкладні нелінійні коливання в пружних тілах вивчаються з використанням апріорної інформації про форму коливань та з урахуванням уточненої математичної моделі другої (іншої) форми коливань. Запропоновано застосування існуючих або розроблення нових методів для аналізу отриманих неавтономних граничних задач. Ефективність практичної реалізації методології суттєво зростає у випадках, коли величина переміщень пружного тіла, зумовлена однією із форм коливань, значно перевищує інші. Для аналізу такої задачі можна використати відомі перевірені аналітичні методи дослідження систем із малою нелінійністю. Як приклад розглянуто крутильні та згинальні коливання пружного тіла. Показано, що особливо небезпечні резонансні процеси можуть бути зумовлені не тільки зовнішніми збуреннями, але й внутрішнім впливом між деякими формами коливань. Отримані результати дозволяють вибрати основні технологічні та експлуатаційні параметри елементів машин, які здійснюють складні коливання, щоб уникнути у них явищ резонансу.
dc.description.abstractComplex nonlinear oscillations in the elastic bodies are studied using a priori information about the oscillations form and taking into account a refined mathematical model of the second (other) form of oscillations. Application of existing methods or development of the new ones for the analysis of received non-autonomous boundary value problems is proposed. The effectiveness of the practical implementation of the discussed methodology significantly increases in cases where the magnitude of the elastic body displacements due to the one form of oscillations is much higher than the other one. To analyze the problem one can use the well-known tested analytical methods for the systems with the small nonlinearity. Torsional and bending oscillations of the elastic body are shown as the example. It is also demonstrated that especially dangerous resonant processes can be caused not only by the external perturbations but also by the internal influence between some forms of oscillations. The obtained results allow to choose the basic technological and operational parameters of the machine oscillating elements in order to avoid the resonance phenomena.
dc.format.extent152-158
dc.format.pages7
dc.identifier.citationOn the external and internal resonance phenomena of the elastic bodies with the complex oscillations / N. Huzyk, P. Pukach, B. Sokil, M. Sokil, M. Vovk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 152–158.
dc.identifier.citationenOn the external and internal resonance phenomena of the elastic bodies with the complex oscillations / N. Huzyk, P. Pukach, B. Sokil, M. Sokil, M. Vovk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 152–158.
dc.identifier.doi10.23939/mmc2022.01.152
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60545
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (9), 2022
dc.relation.references[1] Andrukhiv A., Sokil B., Sokil M. Asymptotic method in the investigation of complex nonlinear oscillations of the elastic bodies. Ukrainian Journal of Mechanical Engineering and Materials Science. 4 (2), 58–67 (2018).
dc.relation.references[2] Boholyubov N. N., Mitropolsky Yu. A. Asymptotic methods in the theory of nonlinear oscillations. Moscow, Fizmatlit (1974), (in Russian).
dc.relation.references[3] Mitropolsky Yu. A., Moseenkov B. I. Asymptotic solutions of partial differential equations. Kyiv, Vyshcha Shkola (1976), (in Russian).
dc.relation.references[4] Bayat M., Pakara I., Domairry G. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review. Latin American Journal of Solids and Structures. 9 (2), 1–93 (2012).
dc.relation.references[5] Pukach P. Ya. On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time. Nonlinear Oscillations. 14 (3), 369–378 (2012).
dc.relation.references[6] Cveticanin L. Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration. 374, 199–210 (2016).
dc.relation.references[7] Cveticanin L., Pog´any T. Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics. 2012, Article ID: 649050 (2012).
dc.relation.references[8] Mitropolsky Yu. A., Sokil B. I. On the application of Ateb-functions to the construction of an asymptotic solution of the perturbed nonlinear Klein-Gordon equation. Ukrainian Mathematical Journal. 50 (5), 754–760 (1998).
dc.relation.references[9] Sokil B. Construction of asymptotic solutions of certain boundary-value problems for the nonautonomous wave equation. Journal of Mathematical Sciences. 96 (1), 2878–2882 (1999).
dc.relation.references[10] Ogorodnikov P., Svitlytskyi V., Hohol V. Study of connection between longitudinal and rotary fluctuations of the drill stem. Oil & gas industry of Ukraine. 2, 6–9 (2014).
dc.relation.references[11] Borshch O., Gulyayev V. Spiral waves in elastic twisted rotating tube rods with internal flows of liquid. Acoustic Bulletin. 10 (3), 12–18 (2007).
dc.relation.references[12] Goroshko A., Royzman V. Statistical Methods for Providing the Stability of the Solutions of Inverse Problems and Their Application to Decrease Rotor Vibroactivity. Journal of Machinery Manufacture and Reliability. 44 (3), 232–238 (2015).
dc.relation.references[13] Goroshko A. Purpose permissible unbalance for high-speed rotor. Vibrations in engineering and technology. 2 (82), 69–76 (2016).
dc.relation.references[14] Pirogova N., Taranenko P. Calculative and Experimental Analysis of Natural and Critical Frequencies and Mode Shapes of High-speed Rotor for Micro Gas Turbine Plant. Procedia Engineering. 129, 997–1004 (2015).
dc.relation.references[15] Kyuho Sim, Lee Yong-Bok, Tae Ho Kim. Rotordynamic Performance of Shimmed Gas Foil Bearings for Oil-Free Turbochargers. Journal of Tribology. 134 (3), 031102 (2012).
dc.relation.references[16] Do-Kwan Hong, Daesuk Joo, Byung-Chul Woo, Yeon-Ho Jeong, Dae-Hyun Koo, Chan-Woo Ahn, YunHyun Cho. Performance verification of a high speed motor-generator for a microturbine generator. International Journal of Precision Engineering and Manufacturing. 14 (7), 1237–1244 (2013).
dc.relation.references[17] Pavlovsky M., Putyata T. Theoretical mechanics. Kyiv, Vyshcha Shkola (1985), (in Ukrainian).
dc.relation.referencesen[1] Andrukhiv A., Sokil B., Sokil M. Asymptotic method in the investigation of complex nonlinear oscillations of the elastic bodies. Ukrainian Journal of Mechanical Engineering and Materials Science. 4 (2), 58–67 (2018).
dc.relation.referencesen[2] Boholyubov N. N., Mitropolsky Yu. A. Asymptotic methods in the theory of nonlinear oscillations. Moscow, Fizmatlit (1974), (in Russian).
dc.relation.referencesen[3] Mitropolsky Yu. A., Moseenkov B. I. Asymptotic solutions of partial differential equations. Kyiv, Vyshcha Shkola (1976), (in Russian).
dc.relation.referencesen[4] Bayat M., Pakara I., Domairry G. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review. Latin American Journal of Solids and Structures. 9 (2), 1–93 (2012).
dc.relation.referencesen[5] Pukach P. Ya. On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time. Nonlinear Oscillations. 14 (3), 369–378 (2012).
dc.relation.referencesen[6] Cveticanin L. Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration. 374, 199–210 (2016).
dc.relation.referencesen[7] Cveticanin L., Pog´any T. Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics. 2012, Article ID: 649050 (2012).
dc.relation.referencesen[8] Mitropolsky Yu. A., Sokil B. I. On the application of Ateb-functions to the construction of an asymptotic solution of the perturbed nonlinear Klein-Gordon equation. Ukrainian Mathematical Journal. 50 (5), 754–760 (1998).
dc.relation.referencesen[9] Sokil B. Construction of asymptotic solutions of certain boundary-value problems for the nonautonomous wave equation. Journal of Mathematical Sciences. 96 (1), 2878–2882 (1999).
dc.relation.referencesen[10] Ogorodnikov P., Svitlytskyi V., Hohol V. Study of connection between longitudinal and rotary fluctuations of the drill stem. Oil & gas industry of Ukraine. 2, 6–9 (2014).
dc.relation.referencesen[11] Borshch O., Gulyayev V. Spiral waves in elastic twisted rotating tube rods with internal flows of liquid. Acoustic Bulletin. 10 (3), 12–18 (2007).
dc.relation.referencesen[12] Goroshko A., Royzman V. Statistical Methods for Providing the Stability of the Solutions of Inverse Problems and Their Application to Decrease Rotor Vibroactivity. Journal of Machinery Manufacture and Reliability. 44 (3), 232–238 (2015).
dc.relation.referencesen[13] Goroshko A. Purpose permissible unbalance for high-speed rotor. Vibrations in engineering and technology. 2 (82), 69–76 (2016).
dc.relation.referencesen[14] Pirogova N., Taranenko P. Calculative and Experimental Analysis of Natural and Critical Frequencies and Mode Shapes of High-speed Rotor for Micro Gas Turbine Plant. Procedia Engineering. 129, 997–1004 (2015).
dc.relation.referencesen[15] Kyuho Sim, Lee Yong-Bok, Tae Ho Kim. Rotordynamic Performance of Shimmed Gas Foil Bearings for Oil-Free Turbochargers. Journal of Tribology. 134 (3), 031102 (2012).
dc.relation.referencesen[16] Do-Kwan Hong, Daesuk Joo, Byung-Chul Woo, Yeon-Ho Jeong, Dae-Hyun Koo, Chan-Woo Ahn, YunHyun Cho. Performance verification of a high speed motor-generator for a microturbine generator. International Journal of Precision Engineering and Manufacturing. 14 (7), 1237–1244 (2013).
dc.relation.referencesen[17] Pavlovsky M., Putyata T. Theoretical mechanics. Kyiv, Vyshcha Shkola (1985), (in Ukrainian).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectнелінійне пружне тіло
dc.subjectасимптотичні методи
dc.subjectамплітуда
dc.subjectрезонанс
dc.subjectскладні коливання
dc.subjectnonlinear elastic body
dc.subjectasymptotic methods
dc.subjectamplitude
dc.subjectresonance
dc.subjectcomplex oscillations
dc.titleOn the external and internal resonance phenomena of the elastic bodies with the complex oscillations
dc.title.alternativeПро зовнішні та внутрішні резонансні явища у пружних тілах, які здійснюють складні коливання
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v9n1_Huzyk_N-On_the_external_and_internal_152-158.pdf
Size:
739.88 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v9n1_Huzyk_N-On_the_external_and_internal_152-158__COVER.png
Size:
461.22 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: