Окремий випадок термохімічного аналізу кавітаційного сонолізу води

dc.citation.epage44
dc.citation.issue1
dc.citation.spage39
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorSukhatskyi, Yu.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2021-01-28T11:24:23Z
dc.date.available2021-01-28T11:24:23Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractРозглянуто механізм сонолізу води з утворенням як інтермедіатів (вільних радикалів), так і основних продуктів (водню та кисню), що мають важливе значення для теплоенергетики і технологій водоочищення, які ґрунтуються на застосуванні передових процесів окиснення. Проаналізовано ефективність генерування гідроксильних радикалів у середовищі інертних газів та кисню. Розраховано величину хіміко-акустичного коефіцієнта корисної дії для гідродинамічного струменевого кавітатора, яка становить 0,3675 %, що, принаймні, у 2,5 рази перевищує аналогічну величину для ультразвукових генераторів кавітації.
dc.description.abstractThe mechanism of water sonolysis with the formation of both intermediates (free radicals) and basic products (hydrogen and oxygen), which are important for thermal power engineering and water purification technologies, based on the use of advanced oxidation processes, wasresearched. The efficiency of hydroxyl radical generation in the environment of inert gases and oxygen was analyzed. The value of the chemical-acoustic efficiency for the hydrodynamic jet cavitator was calculated and itis 0.3675 %, which is at least 2.5 times higher than the similar value for ultrasonic cavitation generators.
dc.format.extent39-44
dc.format.pages6
dc.identifier.citationСухацький Ю. В. Окремий випадок термохімічного аналізу кавітаційного сонолізу води / Ю. В. Сухацький // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 39–44.
dc.identifier.citationenSukhatskyi Yu. Particular case of thermochemical analysis of cavitation sonolysis of water / Yu. Sukhatskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 39–44.
dc.identifier.doidoi.org/10.23939/ctas2020.01.039
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56097
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.relation.references1. Chiha, M., Merouani, S., Hamdaoui, O., Baup, S., Gondrexon, N., Pétrier, C. (2010). Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics. Ultrasonics Sonochemistry, 17 (5), 773–782.
dc.relation.references2. Korn, M., Andrade, M. V. A. S., Borges, S. S., Sousa, C. S., Oliveira, F. S. (2003). Reagent generation assisted by ultrasonic irradiation. Journal of the Brazilian Chemical Society, 14 (2), 254–258.
dc.relation.references3. Torres-Palma, R. A., Serna-Galvis, E. A. (2018). Sonolysis. In S. C. Ameta & R. Ameta (Ed.), Advanced Oxidation Processes for Wastewater Treatment (1st Ed.). (pp. 177–213). New York, NY: Academic Press.
dc.relation.references4. Merouani, S., Hamdaoui, O., Rezgui, Y., Guemini, M. (2015). Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Ultrasonics Sonochemistry, 22, 41–50.
dc.relation.references5. Merouani, S., Hamdaoui, O., Rezgui, Y., Guemini, M. (2016). Computational engineering study of hydrogen production via ultrasonic cavitation in water. International Journal of Hydrogen Energy, 41 (2), 832–844.
dc.relation.references6. Merouani, S., Hamdaoui, O. (2018). Correlations between the sonochemical production rate of hydrogen and the maximum temperature and pressure reached in acoustic bubbles. Arabian Journal for Science and Engineering, 43, 6109–6117.
dc.relation.references7. Kohno, M., Mokudai, T., Ozawa, T., Niwano, Y. (2011). Free radical formation from sonolysis of water in the presence of different gases. Journal of Clinical Biochemistry and Nutrition, 49 (2), 96–101.
dc.relation.references8. Kidak, R., Ince, N.H. (2006). Effects of operating parameters on sonochemical decomposition of phenol. Journal of Hazardous Materials, 137 (3), 1453–1457.
dc.relation.references9. Babu, S. G., Ashokkumar, M., Neppolian, B. (2016). The role of ultrasound on advanced oxidation processes. In J. C. Colmenares & G. Chatel (Ed.), Sonochemistry: from basic principles to innovative applications. (pp. 117–148). Cham: Springer.
dc.relation.references10. Kvartenko, O. M. (2019). Rozvytok naukovykh zasad udoskonalennya tekhnolohiy ochyshchennya bahato komponentnykh pidzemnykh vod: dys. d-ratekhn. nauk. Natsional’nyy tekhnichnyy universytet Ukrayiny “Kyyivs’kyy politekhnichnyy instytut imeni Ihorya Sikors’koho”, Kyyiv.
dc.relation.references11. Grieser, F. (Eds.). (2013). Free radical formation and scavenging by solutes in the sonolysis of aqueous solutions, Proceedings of Meetings on Acoustics, ICA 2013. Montreal, Canada: Acoustical Society of America.
dc.relation.references12. Merouani, S., Hamdaoui, O., Rezgui, Y., Guemini, M. (2015). Mechanism of the sonochemical production of hydrogen. International Journal of Hydrogen Energy, 40 (11), 4056–4064.
dc.relation.references13. Rashwan, S. S., Dincer, I., Mohany, A., Pollet, B. G. (2019). The sono-hydro-gen process (ultrasound induced hydrogen production): challenges and opportunities. International Journal of Hydrogen Energy, 44 (29), 14500–14526.
dc.relation.references14. Sathishkumar, P., Mangalaraja, V., Anandan, S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – a powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews, 55, 426–454.
dc.relation.references15. Shinde, S. S., Bhosale, C. H., Rajpure, K. Y. (2012). Hydroxyl radical’s role in the remediation of wastewater. Journal of Photochemistry and Photobiology B: Biology, 116, 66–74.
dc.relation.references16. Penconi, M., Rossi, F., Ortica, F., Elisei, F., Gentili, P. L. (2015). Hydrogen production from water by photolysis, sonolysis and sonophotolysis with solid solutions of rare earth, gallium and indium oxides as heterogeneous catalysts. Sustainability, 7, 9310–9325.
dc.relation.references17. Von Sonntag, C. (2007). The basics of oxidants in water treatment. Part A: OH radical reactions. Water Science & Technology, 55 (12), 19–23.
dc.relation.references18. Znak, Z. O., Sukhatskiy, Yu. V., Mnykh, R. V., Tkach, Z. S. (2018). Thermochemical analysis of energetic in the process of water sonolysis in cavitation fields. Voprosy khimii i khimicheskoi tekhnologii, 3, 64–69.
dc.relation.references19. Margulis, M. A. (1986). Zvuko khimicheskiye reaktsii i sonolyuminestsentsiya. Moskva: Khimiya.
dc.relation.referencesen1. Chiha, M., Merouani, S., Hamdaoui, O., Baup, S., Gondrexon, N., Pétrier, C. (2010). Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics. Ultrasonics Sonochemistry, 17 (5), 773–782.
dc.relation.referencesen2. Korn, M., Andrade, M. V. A. S., Borges, S. S., Sousa, C. S., Oliveira, F. S. (2003). Reagent generation assisted by ultrasonic irradiation. Journal of the Brazilian Chemical Society, 14 (2), 254–258.
dc.relation.referencesen3. Torres-Palma, R. A., Serna-Galvis, E. A. (2018). Sonolysis. In S. C. Ameta & R. Ameta (Ed.), Advanced Oxidation Processes for Wastewater Treatment (1st Ed.). (pp. 177–213). New York, NY: Academic Press.
dc.relation.referencesen4. Merouani, S., Hamdaoui, O., Rezgui, Y., Guemini, M. (2015). Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Ultrasonics Sonochemistry, 22, 41–50.
dc.relation.referencesen5. Merouani, S., Hamdaoui, O., Rezgui, Y., Guemini, M. (2016). Computational engineering study of hydrogen production via ultrasonic cavitation in water. International Journal of Hydrogen Energy, 41 (2), 832–844.
dc.relation.referencesen6. Merouani, S., Hamdaoui, O. (2018). Correlations between the sonochemical production rate of hydrogen and the maximum temperature and pressure reached in acoustic bubbles. Arabian Journal for Science and Engineering, 43, 6109–6117.
dc.relation.referencesen7. Kohno, M., Mokudai, T., Ozawa, T., Niwano, Y. (2011). Free radical formation from sonolysis of water in the presence of different gases. Journal of Clinical Biochemistry and Nutrition, 49 (2), 96–101.
dc.relation.referencesen8. Kidak, R., Ince, N.H. (2006). Effects of operating parameters on sonochemical decomposition of phenol. Journal of Hazardous Materials, 137 (3), 1453–1457.
dc.relation.referencesen9. Babu, S. G., Ashokkumar, M., Neppolian, B. (2016). The role of ultrasound on advanced oxidation processes. In J. C. Colmenares & G. Chatel (Ed.), Sonochemistry: from basic principles to innovative applications. (pp. 117–148). Cham: Springer.
dc.relation.referencesen10. Kvartenko, O. M. (2019). Rozvytok naukovykh zasad udoskonalennya tekhnolohiy ochyshchennya bahato komponentnykh pidzemnykh vod: dys. d-ratekhn. nauk. Natsional’nyy tekhnichnyy universytet Ukrayiny "Kyyivs’kyy politekhnichnyy instytut imeni Ihorya Sikors’koho", Kyyiv.
dc.relation.referencesen11. Grieser, F. (Eds.). (2013). Free radical formation and scavenging by solutes in the sonolysis of aqueous solutions, Proceedings of Meetings on Acoustics, ICA 2013. Montreal, Canada: Acoustical Society of America.
dc.relation.referencesen12. Merouani, S., Hamdaoui, O., Rezgui, Y., Guemini, M. (2015). Mechanism of the sonochemical production of hydrogen. International Journal of Hydrogen Energy, 40 (11), 4056–4064.
dc.relation.referencesen13. Rashwan, S. S., Dincer, I., Mohany, A., Pollet, B. G. (2019). The sono-hydro-gen process (ultrasound induced hydrogen production): challenges and opportunities. International Journal of Hydrogen Energy, 44 (29), 14500–14526.
dc.relation.referencesen14. Sathishkumar, P., Mangalaraja, V., Anandan, S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – a powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews, 55, 426–454.
dc.relation.referencesen15. Shinde, S. S., Bhosale, C. H., Rajpure, K. Y. (2012). Hydroxyl radical’s role in the remediation of wastewater. Journal of Photochemistry and Photobiology B: Biology, 116, 66–74.
dc.relation.referencesen16. Penconi, M., Rossi, F., Ortica, F., Elisei, F., Gentili, P. L. (2015). Hydrogen production from water by photolysis, sonolysis and sonophotolysis with solid solutions of rare earth, gallium and indium oxides as heterogeneous catalysts. Sustainability, 7, 9310–9325.
dc.relation.referencesen17. Von Sonntag, C. (2007). The basics of oxidants in water treatment. Part A: OH radical reactions. Water Science & Technology, 55 (12), 19–23.
dc.relation.referencesen18. Znak, Z. O., Sukhatskiy, Yu. V., Mnykh, R. V., Tkach, Z. S. (2018). Thermochemical analysis of energetic in the process of water sonolysis in cavitation fields. Voprosy khimii i khimicheskoi tekhnologii, 3, 64–69.
dc.relation.referencesen19. Margulis, M. A. (1986). Zvuko khimicheskiye reaktsii i sonolyuminestsentsiya. Moskva: Khimiya.
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectкавітація
dc.subjectсоноліз
dc.subjectрадикали
dc.subjectгідродинамічний струменевий кавітатор
dc.subjectультразвук
dc.subjectкисень
dc.subjectводень
dc.subjectхіміко-акустичний коефіцієнт корисної дії
dc.subjectcavitation
dc.subjectsonolysis
dc.subjectradicals
dc.subjecthydrodynamic jet cavitator
dc.subjectultrasound
dc.subjectoxygen
dc.subjecthydrogen
dc.subjectchemical-acoustic efficiency
dc.titleОкремий випадок термохімічного аналізу кавітаційного сонолізу води
dc.title.alternativeParticular case of thermochemical analysis of cavitation sonolysis of water
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020v3n1_Sukhatskyi_Yu-Particular_case_of_thermochemical_39-44.pdf
Size:
634.64 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020v3n1_Sukhatskyi_Yu-Particular_case_of_thermochemical_39-44__COVER.png
Size:
405.79 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.97 KB
Format:
Plain Text
Description: