Методика визначення розливів нафти в Керченській протоці за різночасовими космічними знімками

dc.citation.epage71
dc.citation.issue2(38)
dc.citation.journalTitleСучасні досягнення геодезичної науки та виробництва
dc.citation.spage67
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЧетверіков, Б.
dc.contributor.authorКорнієнко, О.
dc.contributor.authorСорока, О.
dc.contributor.authorКілару, В.
dc.contributor.authorChetverikov, B.
dc.contributor.authorKorniyenko, O.
dc.contributor.authorSoroka, O.
dc.contributor.authorKilaru, V.
dc.coverage.placenameЛьвів
dc.date.accessioned2020-02-21T10:11:10Z
dc.date.available2020-02-21T10:11:10Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractThe aim of the work is to familiarize with the method of satellite monitoring of oil spills on the sea surface, the formation of skills and abilities to detect the presence of changes on time-varying space images for a specific area with the help of DeltaCue module ErdasImagine software package. Method. The technological scheme proposed in the paper involves the use of two independent methods of processing time-varying space images to determine the oil spill area in the Kerch Strait and compare the results. The first technique is to use of defining changes to DeltaCue objects, included in the ErdasImagine software package. This module includes the processing of images before and after the event. When processing data, it is possible to use three filters: spectral segmentation, incorrect recording of pixel pairs images and spatial filtering. The second method used is the uncontrolled classification by the ISODATA algorithm. Firstly, an image of the oil spill was classified, and then after the spill. With an image after the spill it was carried out 6 iterations, while not grouping classes to two: spill and everything else. After that, the results were exported to a vector format that detected the difference in the images at the spill location. The obtained data is comparatively and it is determined that the method using the DeltaCue module showed a better result and is more suitable for this kind of work. Results. As a result of the research, the oil spill area in the Kerch Strait in 2007 was received. Using the DeltaCue module of the ErdasImagine software package, an area of 30,918.4 km2 was obtained. After taking an uncontrolled classification of images, an area of oil spill was obtained at 29717.5 km2. After analyzing the results obtained, it can be concluded that for such studies, it is more efficient to use the DeltaCue module, since in the uncontrolled classification a part of the pixels is recorded incorrectly. Scientific novelty. The methods presented in the studies are well-known, and the scientific novelty lies precisely in their comparison on the example of a man-made disaster. Practical significance. Using these techniques, you can determine the effects of various natural and man-made disasters and determine which one is best suited to one particular case.
dc.format.extent67-71
dc.format.pages5
dc.identifier.citationМетодика визначення розливів нафти в Керченській протоці за різночасовими космічними знімками / Б. Четверіков, О. Корнієнко, О. Сорока, В. Кілару // Сучасні досягнення геодезичної науки та виробництва. — Львів : Видавництво Львівської політехніки, 2019. — № 2(38). — С. 67–71.
dc.identifier.citationenMethod of determination of oil spill in the Kerch strait by different time space images / B. Chetverikov, O. Korniyenko, O. Soroka, V. Kilaru // Modern achievements of geodesic science and industry. — Vydavnytstvo Lvivskoi politekhniky, 2019. — No 2(38). — P. 67–71.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45918
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofСучасні досягнення геодезичної науки та виробництва, 2(38), 2019
dc.relation.ispartofModern achievements of geodesic science and industry, 2(38), 2019
dc.relation.referencesЛитовченко К. Ц., Лаврова О. Ю., Митягина М. И. и др. (2007). Нефтяные загрязнения восточной части Черного моря: космический мониторинг и подспутниковая верификация. Исследование Земли из космоса, № 1, C. 81-94.
dc.relation.referencesИванов А. Ю., Ермошкин И. С. (2004). Картографирование пленочных загрязнений морской по¬верхности по данным космической радиоло¬кации. Технологии ТЭК, № 3, С. 64-69.
dc.relation.referencesИванов А., Островский А. (2003). Применение средств космической радиолокации для мониторинга морской добычи и транспортировки нефти. Технологии ТЭК, № 6, С. 58-64.
dc.relation.referencesКрасовський Г. Я., Петросов В. А. (2003).
dc.relation.referencesІнформаційні технології космічного моніторингу водних екосистем і прогнозу водоспоживання міст. К.: Наукова думка, 223 с.
dc.relation.referencesAlpers, W., & H. Espedal (2004). Oils and surfactants. In: Synthetic Aperture Radar Marine User’s Manual. U.S. Department of Commerce, Washington, p. 263-276
dc.relation.referencesBrekke, C., & A. H. S. Solberg. 2005. Oil spill detection by satellite remote sensing. Rem Sens. Environ., 95: 1-13.
dc.relation.referencesLoncar, J., & M. Maradin. 2009. Environmental challenges sustainable development in the Croatian North Adriatic littoral region. Razgledi, 31: 159¬173. (available at: http://www.ff.uni-lj.si/oddelki/geo/publikacije/ dela/files/dela_31/10_loncar.pdf).
dc.relation.referencesOstergaard, P. (2004). Oil Spill Contingency Planning and Technical Cooperation of the Black Sea Region.
dc.relation.referencesFingas M. F., Brown C. E. (2000). Review of oil spill remote sensing. Proc. of the 5th Internat. Conf. on Remote Sensing for Marine and Coastal
dc.relation.referencesEnvironments. Environmental Research Institute of Michigan, Ann Arbor, Michigan, P. 211-218.
dc.relation.referencesRasmussen, C, Gerke, O, Greco, M, Richard, P, Alberto, J, Dobson, E, Nijenhuis, R. Spill (2007). in Kerch Strait, Ukraine, Final Report, Community Civil Protection Mechanism, European Commission.
dc.relation.referencesShi, L., A. Yu. Ivanov, M.-X. He, & C. Zhao (2008). Oil spill mapping in the western part of the East China Sea using synthetic aperture radar imagery. Int. J. of Rem.. Sens., 29 (21): 6315-6329.
dc.relation.referencesenLitovchenko K. Ts., Lavrova O. Yu., Mityagina M. I. i dr. (2007). Neftyanyie zagryazneniya vostochnoy chasti Chernogo morya: kosmicheskiy monitoring i podsputnikovaya verifikatsiya. Issledovanie Zemli iz kosmosa. No. 1, C. 81-94.
dc.relation.referencesenIvanov A. Yu., Ermoshkin I. S. (2004). Kartografirovanie plenochnyih zagryazneniy morskoy poverhnosti po dannyim kosmicheskoy radiolokatsii. Tehnologii TEK, No. 3, S. 64-69.
dc.relation.referencesenIvanov A., Ostrovskiy A. (2003). Primenenie sredstv kosmicheskoy radiolokatsii dlya monitoringa morskoy dobyichi i transportirovki nefti. Tehnologii TEK, No. 6, S. 58-64.
dc.relation.referencesenKrasovsky'j G. Ya., Petrosov V. A. (2003). Informacijni texnologiyi kosmichnogo monitoryngu vodnyx ekosystem i prognozu vodospozhyvannya mist. K.: Naukova dumka, 223 s.
dc.relation.referencesenAlpers, W., & H. Espedal (200). Oils and surfactants. In: Synthetic Aperture Radar Marine User’s Manual. U.S.
dc.relation.referencesenDepartment of Commerce, Washington, p. 263-276.
dc.relation.referencesenBrekke, C., & A. H. S. Solberg (2005). Oil spill detection by satellite remote sensing. Rem. Sens. Environ., 95: 1-13. Loncar, J., & M. Maradin. 2009. Environmental challenges sustainable development in the Croatian North Adriatic littoral region. Razgledi, 31: 159-173. (available at: http:// www.ff.uni-lj.si/oddelki/geo/publikacije/dela/files/dela_31/10_loncar.pdf).
dc.relation.referencesenOstergaard, P. (2004). Oil Spill Contingency Planning and Technical Cooperation of the Black Sea Region.
dc.relation.referencesenFingas M. F., Brown C. E. (2000). Review of oil spill remote sensing. Proc. of the 5th Internat. Conf. on Remote Sensing for Marine and Coastal Environments. Environmental Research Institute of Michigan, Ann Arbor, Michigan, P. 211-218.
dc.relation.referencesenRasmussen, C., Gerke, O., Greco, M., Richard, P., Alberto, J., Dobson, E., Nijenhuis, R. (2007). Spill in Kerch Strait, Ukraine, Final Report, Community Civil Protection Mechanism, European Commission.
dc.relation.referencesenShi, L., A. Yu. Ivanov, M.-X. He, & C. Zhao (2008). Oil spill mapping in the western part of the East China Sea using synthetic aperture radar imagery. Int. J. of Rem. ^ns., 29 (21): 6315-6329.
dc.relation.urihttp://www.ff.uni-lj.si/oddelki/geo/publikacije/
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder©Західне геодезичне товариство, 2019
dc.subjectмодуль DeltaCue
dc.subjectнеконтрольована класифікація
dc.subjectрізночасові космічні знімки
dc.subjectрозлив нафти
dc.subjectсинтезовані знімки
dc.subjectDeltaCue module
dc.subjectuncontrolled classification
dc.subjectdifferent time space images
dc.subjectoil spill
dc.subjectsynthesized images
dc.subject.udc528.92
dc.titleМетодика визначення розливів нафти в Керченській протоці за різночасовими космічними знімками
dc.title.alternativeMethod of determination of oil spill in the Kerch strait by different time space images
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019n2_38__Chetverikov_B-Method_of_determination_67-71.pdf
Size:
612.39 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019n2_38__Chetverikov_B-Method_of_determination_67-71__COVER.png
Size:
1.31 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.06 KB
Format:
Plain Text
Description: