About modernization of Ukrainian height system

dc.citation.epage26
dc.citation.issue93
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage13
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationGeokart-International, Sp. z o.o
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationGeokart-International, Sp. z o.o
dc.contributor.authorТревого, Ігор
dc.contributor.authorЗаблоцький, Федір
dc.contributor.authorPiskorek, Анджей
dc.contributor.authorДжуман, Богдан
dc.contributor.authorВовк, Андрій
dc.contributor.authorTrevoho, Ihor
dc.contributor.authorZablotskyi, Fedir
dc.contributor.authorPiskorek, Andrzej
dc.contributor.authorDzhuman, Bohdan
dc.contributor.authorVovk, Andriy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-02T09:08:36Z
dc.date.available2023-03-02T09:08:36Z
dc.date.created2021-03-12
dc.date.issued2021-03-12
dc.description.abstractМета. Метою цієї роботи є встановлення зв’язків між Балтійською та Європейською системами висот на основі проведення нівелювання І класу між українськими та польськими контрольними пунктами базової висотної мережі та побудова поверхні квазігеоїда на прикордонну територію. Методика. Повноцінна інтеграція висотної системи України у Європейську вертикальну референцну систему складається з двох етапів: модернізації висотної мережі України шляхом її інтеграції в Об’єднану європейську нівелірну мережу UELN; побудови та використання в якості регіонального вертикального датуму моделі високоточного квазігеоїда, яка узгоджуватиметься з Європейським геоїдом EGG2015. Виконано аналіз методики нівелювання високих класів в Україні та Польщі, а також аналіз методик побудови моделей квазігеоїда в цих країнах. Результати. Для інтеграції української висотної системи в систему UELN/EVRS2000 українською стороною виконано геометричне нівелювання І класу за двома лініями: Львів–Шегині–Перемишль та Ковель–Ягодин-Хелм загальною протяжністю 196 км. Середня квадратична систематична похибка по обох лініях нівелювання становить s<0.01 мм/км. Своєю чергою, середня квадратична випадкова похибка по лінії Львів-Шегині–Перемишль рівна h=0.29 мм/км, а по лінії Ковель–Ягодин–Хелм – h=0.27 мм/км. Для подвійного контролю на транскордонній частині польською стороною виконано високоточне нівелювання протяжністю 33 км. Розходження між українським та польським нівелюванням по всіх секціях є в межах допуску. Проведено аналіз впливу геодинамічних явищ на контроль високоточного нівелювання. На всіх фундаментальних та ґрунтових реперах, а також горизонтальних марках виконано GNSS-нівелювання. Ці виміри використано для побудови моделі квазігеоїда на прикордонну територію України. СКП отриманої моделі квазігеоїда становить близько 2 см, що відповідає точності вхідної інформації. Наукова новизна і практична значущість. З’єднання української та європейської систем висот забезпечить інтеграцію України в європейську економічну систему, участь в міжнародних наукових дослідженнях глобальних екологічних і геодинамічних процесів, вивчення фігури Землі та гравітаційного поля, картографування території України з використанням навігаційних супутникових технологій та дистанційного зондування. Обчислення високоточної моделі квазігеоїда на територію України відносно європейської системи висот, узгодженої з європейським геоїдом EGG2015, дасть змогу отримувати гравітаційно залежні висоти з використанням сучасних супутникових технологій.
dc.description.abstractPurpose. The purpose of this work is obtaining connections between the Baltic and European height systems based on the I class leveling between the Ukrainian and Polish control points of the base vertical networks and construction of the quasigeoid surface on the border area. Method. Full integration of the hight system of Ukraine into the European vertical reference system (EVRS) consists of two stages: modernization of the height network of Ukraine through its integration into the United European leveling network UELN; construction and use as a regional vertical date the model of high-precision quasigeoid, which will be consistent with the European geoid EGG2015. The analysis of methods of high-precision leveling in Ukraine and Poland, and also the analysis of methods of construction of quasigeoid models in these countries is performed. Results. For integrating the Ukrainian hight system into the UELN/EVRS2000 system, the Ukrainian side performed I class geometric leveling along two lines: LvivShehyni–Przemysl and Kovel–Yagodyn–Chelm with total length of 196 km. The root mean square systematic error on both lines of leveling was s<0.01 mm/km. In turn, the mean square random error along the line Lviv–ShehyniPrzemysl is h=0.29 mm/km, and along the line Kovel–Yagodyn–Chelm is h=0.27 mm/km. For double control on the cross-border part, the Polish side performed high-precision leveling with a length of 33 km. The differences between the Ukrainian and Polish leveling in all sections are within the tolerance. The analysis of influence of geodynamic phenomena on control of high-precision leveling is carried out. GNSS-leveling was performed on all fundamental and ground benchmarks, as well as horizontal marks. These measurements were used to build a quasigeoid model for the border area of Ukraine. The MSE of the obtained quasigeoid model is about 2 cm, which corresponds to the accuracy of the input information. Scientific novelty and practical significance. The connection of the Ukrainian and European height systems will ensure Ukraine’s integration into the European economic system, participation in international research of global ecological and geodynamic processes, study of the Earth’s shape and gravitational field and mapping of Ukraine using navigational and remote-sensing satellite technologies. Calculation of a high-precision model of a quasigeoid on the Ukraine area in relation to the European height system, agreed with the European geoid EGG2015, will allow to obtain gravity-dependent heights using modern satellite technologies.
dc.format.extent13-26
dc.format.pages14
dc.identifier.citationAbout modernization of Ukrainian height system / Ihor Trevoho, Fedir Zablotskyi, Andrzej Piskorek, Bohdan Dzhuman, Andriy Vovk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 13–26.
dc.identifier.citationenAbout modernization of Ukrainian height system / Ihor Trevoho, Fedir Zablotskyi, Andrzej Piskorek, Bohdan Dzhuman, Andriy Vovk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 13–26.
dc.identifier.doidoi.org/10.23939/istcgcap2021.93.013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57464
dc.language.isoen
dc.publisherВидавництво Національного університету “Львівська політехніка”
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 93, 2021
dc.relation.ispartofGeodesy, cartography and aerial photography, 93, 2021
dc.relation.referencesChernyaga, P. G., Yanchuk, A. Y., & Ishutina, A. S.
dc.relation.references(2010). The calculation of geometrical levelling
dc.relation.referencesaccuracy on geodynamic polygons. Geodynamics, 1(9), 10–21.
dc.relation.referencesDenker H. (2015). A new European gravimetric (quasi)geoid
dc.relation.referencesEGG2015. Poster presented at XXVI General Assembly
dc.relation.referencesof the International Union of Geodesy and Geophysics
dc.relation.references(IUGG), Earth and Environmental Sciences for
dc.relation.referencesFuture Generations, 22 June – 02 July 2015, Prague,
dc.relation.referencesCzech Republic.
dc.relation.referencesDzhuman, B. (2018). Modeling of the regional gravitational
dc.relation.referencesfield using first and second derivative of spherical
dc.relation.referencesfunctions. Geodesy, cartography and aerial
dc.relation.referencesphotography, 88, 5–12
dc.relation.referencesInstructions for calculating leveling. M. publishing house
dc.relation.references“Nedra”, 1971, p. 102. (in Russian).
dc.relation.referencesInstructions for leveling I, II, III and IV classes, Moscow,
dc.relation.referencespublishing house “Nedra”, 1966. (in Russian).
dc.relation.referencesKnudsen, P. (1987). Estimation and modelling of the
dc.relation.referenceslocal empirical covariance function using gravity
dc.relation.referencesand satellite altimeter data. Bulletin géodésique 61(2), 145–160. doi:10.1007/BF02521264.
dc.relation.referencesMarchenko, О. N., Kucher, O. V., & Renkevych, O. V.
dc.relation.references(2007). The results of the construction of quasi-geoid
dc.relation.referencesfor the region of Ukraine (UQG-2006). Bulletin of
dc.relation.referencesGeodesy and Cartography. 2, 3–13. (in Ukrainian).
dc.relation.referencesMarchenko, O. N., Kucher, O. V., & Marchenko, D. O.
dc.relation.references(2013). The results of the clarification of the quasigeoid UQG2012 for the territory of Ukraine.
dc.relation.referencesBulletin of Geodesy and Cartography, 3(84), 3–10.
dc.relation.references(in Ukrainian).
dc.relation.referencesMarchenko, A. N., & Dzhuman, B. B. (2015). Regional
dc.relation.referencesquasigeoid determination: an application to arctic
dc.relation.referencesgravity project. Geodynamics, 1(18), 7–17.
dc.relation.referencesMarchenko, A., & Lopushanskyi, A. (2018). Change in
dc.relation.referencesthe zonal harmonic coefficient C20, Earth's polar
dc.relation.referencesflattening, and dynamical ellipticity from SLR data.
dc.relation.referencesGeodynamics. (2 (25)), 5–14.
dc.relation.referencesMelnik, S. (2014). Matching of altitude systems in
dc.relation.referencesUkraine. The journal of cartography. 10, 28–37. (in
dc.relation.referencesUkrainian). file:///C:/Users/AB68~1/AppData/Local/Temp/ktvsh_2014_10_6-4.pdf
dc.relation.referencesMordvinov, I. S., Pakshin, M. Yu., Lyaska, I. I.,
dc.relation.referencesZayats, O. S., Petrov, S. L., & Tretyak, K. R. (2018).
dc.relation.referencesMonitoring of vertical movements on Miningand
dc.relation.referencesChemical Plant “Polimineral” area based on processing
dc.relation.referencesresults of interferometric satellite radar images and tilt
dc.relation.referencesmeasurements. Modern achievements of geodetic
dc.relation.referencesscience and production. I (35), 70–75. (in Ukrainian).
dc.relation.referencesMoritz, H. (1976). Integral formulas and Collocation.
dc.relation.referencesMan. Geod. 1, 1–40.
dc.relation.referencesPetrov S. L. Monitoring of vertical displacement of
dc.relation.referencestechnogenic-loaded territories by geodetic methods:
dc.relation.referencestesis … PhD. Lviv, 2018. 156 p.
dc.relation.referencesSacher, M., Ihde, J., & Svensson, R. (2006, June). Status
dc.relation.referencesof UELN and steps on the way to EVRS 2007. In
dc.relation.referencesReport on the Symposium of the IAG Subcommission
dc.relation.referencesfor Europe (EUREF), Riga (p. 14–17).
dc.relation.referencesSacher, M., Ihde, J., & Liebsch, G. (2007, June). Status
dc.relation.referencesof EVRS2007. In Presentation at the Symp. of the
dc.relation.referencesIAG Sub-commission for Europe (EUREF) (Vol. 42,
dc.relation.referencesp. 53–57).
dc.relation.referencesSánchez, L., & Sideris, M. G. (2017). Vertical datum
dc.relation.referencesunification for the international height reference
dc.relation.referencessystem (IHRS). Geophysical Journal International, 209(2), 570–586.
dc.relation.referencesSansò, F., Reguzzoni, M., & Barzaghi, R. (2019).
dc.relation.referencesGeodetic heights. Springer International Publishing.
dc.relation.referencesSavchyn, I., & Vaskovets, S. (2018). Local geodynamics
dc.relation.referencesof the territory of Dniester pumped storage power
dc.relation.referencesplant. Acta Geodyn. Geomater, 15(1), 189.
dc.relation.referencesSavchyn, I., & Pronyshyn, R. (2020). Differentiation of
dc.relation.referencesrecent local geodynamic and seismic processes of
dc.relation.referencestechnogenic-loaded territories based on the example
dc.relation.referencesof Dnister Hydro Power Complex (Ukraine). Geodesy
dc.relation.referencesand Geodynamics, 11(5), 391–400.
dc.relation.referencesSzelachowska, M., & Krynski, J. (2014). GDQM-PL13–
dc.relation.referencesthe new gravimetric quasigeoid model for Poland.
dc.relation.referencesGeoinformation Issues, 6(1), 5–19.
dc.relation.referencesTretyak, K., & Turuk, D. (2003). Estimation of accuracy
dc.relation.referencesof state leveling network of 2 class of Ukraine.
dc.relation.referencesGeodesy, cartography and aerial photography, 63, 9–16. (in Ukrainian).
dc.relation.referencesTretyak, K. R., Maksimchuk, V. Y., Kutas, R. I.,
dc.relation.referencesRokityansky, I. I., Gnilko, A. N., Kendzera, A. V., &
dc.relation.referencesTereshin, A. V. (2015). Modern geodynamics and
dc.relation.referencesgeophysical fields of the Carpathians and adjacent
dc.relation.referencesterritories. Lviv: Publishing House of Lviv Polytechnic
dc.relation.references(in Ukrainian
dc.relation.referencesTretyak, K. R., & Vovk, A. I. (2016). Differentation of
dc.relation.referencesthe rotational movements of the european continents
dc.relation.referencesearth crust. Acta Geodynamica et Geomaterialia, 13(1), 181.
dc.relation.referencesTretyak, K. & Vovk, A. I. (2014). Results of determination
dc.relation.referencesof horizontal deformations of the crust of Europe
dc.relation.referencesaccording to GNSS-observations and their connection
dc.relation.referenceswith tectonic structure. Geodynamics. 1 (16), 21–33.
dc.relation.referencesTretyak, K., & Romanyuk, V. (2014). Investigation of
dc.relation.referencesthe relationship between modern vertical displacements of the earth's crust and seismic activity in
dc.relation.referencesEurope. Geodynamics. 1, 7–20.
dc.relation.referencesTretyak, K., & Romaniuk, V. (2018). The research on
dc.relation.referencesthe interrelation between seismic activity and modern vertical movements of the european permanent
dc.relation.referencesgnss-stations. Acta Geodynamics et Geomaterial, 15(2), 143–164.
dc.relation.referencesTrimble DiNi Digital Level User Guide, 2017, p. 145.
dc.relation.referencesTscherning C. C, & Rapp R. H (1974) Closed covariance
dc.relation.referencesexpressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by
dc.relation.referencesanomaly degree variance models. Report Department of
dc.relation.referencesGeodetic Science, no. 208, The Ohio State University,
dc.relation.referencesColumbus, Ohio, USA
dc.relation.referencesVovk, A. I. (2016). Spatio-temporal differentiation of
dc.relation.referenceshorizontal crust movements in Europe, according GNSS
dc.relation.referencesmeasurements: tesis … PhD. Lviv, 153 p. (in Ukrainian).
dc.relation.referencesVovk, A. (2015). Analysis of horizontal movements of
dc.relation.referencesthe earth's crust of Central Europe determined by
dc.relation.referencesGNSS-measurements. Modern achievements of
dc.relation.referencesgeodetic science and production. II (30), 28–31. (in
dc.relation.referencesUkrainian).
dc.relation.referencesZablotskyi F. D., Dzhuman, B., & Brusak, I. (2021). On
dc.relation.referencesthe accuracy of (quasi) geoid models with respect to
dc.relation.referencesthe UELN/EVRS2000 height system. Modern
dc.relation.referencesachievements of geodetic science and production.
dc.relation.references№ І(41), 29–36. (in Ukrainian).
dc.relation.referencesZayats, О., Navodych, M., Petrov, S., & Tretyak, K.
dc.relation.references(2017). Precise tilt measurements for monitoring of
dc.relation.referencesmine fields at Stebnyk potassium deposit area.
dc.relation.referencesGeodynamics. 2 (23), 25–33. (in Ukrainian).
dc.relation.referencesenChernyaga, P. G., Yanchuk, A. Y., & Ishutina, A. S.
dc.relation.referencesen(2010). The calculation of geometrical levelling
dc.relation.referencesenaccuracy on geodynamic polygons. Geodynamics, 1(9), 10–21.
dc.relation.referencesenDenker H. (2015). A new European gravimetric (quasi)geoid
dc.relation.referencesenEGG2015. Poster presented at XXVI General Assembly
dc.relation.referencesenof the International Union of Geodesy and Geophysics
dc.relation.referencesen(IUGG), Earth and Environmental Sciences for
dc.relation.referencesenFuture Generations, 22 June – 02 July 2015, Prague,
dc.relation.referencesenCzech Republic.
dc.relation.referencesenDzhuman, B. (2018). Modeling of the regional gravitational
dc.relation.referencesenfield using first and second derivative of spherical
dc.relation.referencesenfunctions. Geodesy, cartography and aerial
dc.relation.referencesenphotography, 88, 5–12
dc.relation.referencesenInstructions for calculating leveling. M. publishing house
dc.relation.referencesen"Nedra", 1971, p. 102. (in Russian).
dc.relation.referencesenInstructions for leveling I, II, III and IV classes, Moscow,
dc.relation.referencesenpublishing house "Nedra", 1966. (in Russian).
dc.relation.referencesenKnudsen, P. (1987). Estimation and modelling of the
dc.relation.referencesenlocal empirical covariance function using gravity
dc.relation.referencesenand satellite altimeter data. Bulletin géodésique 61(2), 145–160. doi:10.1007/BF02521264.
dc.relation.referencesenMarchenko, O. N., Kucher, O. V., & Renkevych, O. V.
dc.relation.referencesen(2007). The results of the construction of quasi-geoid
dc.relation.referencesenfor the region of Ukraine (UQG-2006). Bulletin of
dc.relation.referencesenGeodesy and Cartography. 2, 3–13. (in Ukrainian).
dc.relation.referencesenMarchenko, O. N., Kucher, O. V., & Marchenko, D. O.
dc.relation.referencesen(2013). The results of the clarification of the quasigeoid UQG2012 for the territory of Ukraine.
dc.relation.referencesenBulletin of Geodesy and Cartography, 3(84), 3–10.
dc.relation.referencesen(in Ukrainian).
dc.relation.referencesenMarchenko, A. N., & Dzhuman, B. B. (2015). Regional
dc.relation.referencesenquasigeoid determination: an application to arctic
dc.relation.referencesengravity project. Geodynamics, 1(18), 7–17.
dc.relation.referencesenMarchenko, A., & Lopushanskyi, A. (2018). Change in
dc.relation.referencesenthe zonal harmonic coefficient P.20, Earth's polar
dc.relation.referencesenflattening, and dynamical ellipticity from SLR data.
dc.relation.referencesenGeodynamics. (2 (25)), 5–14.
dc.relation.referencesenMelnik, S. (2014). Matching of altitude systems in
dc.relation.referencesenUkraine. The journal of cartography. 10, 28–37. (in
dc.relation.referencesenUkrainian). file:///C:/Users/AB68~1/AppData/Local/Temp/ktvsh_2014_10_6-4.pdf
dc.relation.referencesenMordvinov, I. S., Pakshin, M. Yu., Lyaska, I. I.,
dc.relation.referencesenZayats, O. S., Petrov, S. L., & Tretyak, K. R. (2018).
dc.relation.referencesenMonitoring of vertical movements on Miningand
dc.relation.referencesenChemical Plant "Polimineral" area based on processing
dc.relation.referencesenresults of interferometric satellite radar images and tilt
dc.relation.referencesenmeasurements. Modern achievements of geodetic
dc.relation.referencesenscience and production. I (35), 70–75. (in Ukrainian).
dc.relation.referencesenMoritz, H. (1976). Integral formulas and Collocation.
dc.relation.referencesenMan. Geod. 1, 1–40.
dc.relation.referencesenPetrov S. L. Monitoring of vertical displacement of
dc.relation.referencesentechnogenic-loaded territories by geodetic methods:
dc.relation.referencesentesis … PhD. Lviv, 2018. 156 p.
dc.relation.referencesenSacher, M., Ihde, J., & Svensson, R. (2006, June). Status
dc.relation.referencesenof UELN and steps on the way to EVRS 2007. In
dc.relation.referencesenReport on the Symposium of the IAG Subcommission
dc.relation.referencesenfor Europe (EUREF), Riga (p. 14–17).
dc.relation.referencesenSacher, M., Ihde, J., & Liebsch, G. (2007, June). Status
dc.relation.referencesenof EVRS2007. In Presentation at the Symp. of the
dc.relation.referencesenIAG Sub-commission for Europe (EUREF) (Vol. 42,
dc.relation.referencesenp. 53–57).
dc.relation.referencesenSánchez, L., & Sideris, M. G. (2017). Vertical datum
dc.relation.referencesenunification for the international height reference
dc.relation.referencesensystem (IHRS). Geophysical Journal International, 209(2), 570–586.
dc.relation.referencesenSansò, F., Reguzzoni, M., & Barzaghi, R. (2019).
dc.relation.referencesenGeodetic heights. Springer International Publishing.
dc.relation.referencesenSavchyn, I., & Vaskovets, S. (2018). Local geodynamics
dc.relation.referencesenof the territory of Dniester pumped storage power
dc.relation.referencesenplant. Acta Geodyn. Geomater, 15(1), 189.
dc.relation.referencesenSavchyn, I., & Pronyshyn, R. (2020). Differentiation of
dc.relation.referencesenrecent local geodynamic and seismic processes of
dc.relation.referencesentechnogenic-loaded territories based on the example
dc.relation.referencesenof Dnister Hydro Power Complex (Ukraine). Geodesy
dc.relation.referencesenand Geodynamics, 11(5), 391–400.
dc.relation.referencesenSzelachowska, M., & Krynski, J. (2014). GDQM-PL13–
dc.relation.referencesenthe new gravimetric quasigeoid model for Poland.
dc.relation.referencesenGeoinformation Issues, 6(1), 5–19.
dc.relation.referencesenTretyak, K., & Turuk, D. (2003). Estimation of accuracy
dc.relation.referencesenof state leveling network of 2 class of Ukraine.
dc.relation.referencesenGeodesy, cartography and aerial photography, 63, 9–16. (in Ukrainian).
dc.relation.referencesenTretyak, K. R., Maksimchuk, V. Y., Kutas, R. I.,
dc.relation.referencesenRokityansky, I. I., Gnilko, A. N., Kendzera, A. V., &
dc.relation.referencesenTereshin, A. V. (2015). Modern geodynamics and
dc.relation.referencesengeophysical fields of the Carpathians and adjacent
dc.relation.referencesenterritories. Lviv: Publishing House of Lviv Polytechnic
dc.relation.referencesen(in Ukrainian
dc.relation.referencesenTretyak, K. R., & Vovk, A. I. (2016). Differentation of
dc.relation.referencesenthe rotational movements of the european continents
dc.relation.referencesenearth crust. Acta Geodynamica et Geomaterialia, 13(1), 181.
dc.relation.referencesenTretyak, K. & Vovk, A. I. (2014). Results of determination
dc.relation.referencesenof horizontal deformations of the crust of Europe
dc.relation.referencesenaccording to GNSS-observations and their connection
dc.relation.referencesenwith tectonic structure. Geodynamics. 1 (16), 21–33.
dc.relation.referencesenTretyak, K., & Romanyuk, V. (2014). Investigation of
dc.relation.referencesenthe relationship between modern vertical displacements of the earth's crust and seismic activity in
dc.relation.referencesenEurope. Geodynamics. 1, 7–20.
dc.relation.referencesenTretyak, K., & Romaniuk, V. (2018). The research on
dc.relation.referencesenthe interrelation between seismic activity and modern vertical movements of the european permanent
dc.relation.referencesengnss-stations. Acta Geodynamics et Geomaterial, 15(2), 143–164.
dc.relation.referencesenTrimble DiNi Digital Level User Guide, 2017, p. 145.
dc.relation.referencesenTscherning C. C, & Rapp R. H (1974) Closed covariance
dc.relation.referencesenexpressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by
dc.relation.referencesenanomaly degree variance models. Report Department of
dc.relation.referencesenGeodetic Science, no. 208, The Ohio State University,
dc.relation.referencesenColumbus, Ohio, USA
dc.relation.referencesenVovk, A. I. (2016). Spatio-temporal differentiation of
dc.relation.referencesenhorizontal crust movements in Europe, according GNSS
dc.relation.referencesenmeasurements: tesis … PhD. Lviv, 153 p. (in Ukrainian).
dc.relation.referencesenVovk, A. (2015). Analysis of horizontal movements of
dc.relation.referencesenthe earth's crust of Central Europe determined by
dc.relation.referencesenGNSS-measurements. Modern achievements of
dc.relation.referencesengeodetic science and production. II (30), 28–31. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenZablotskyi F. D., Dzhuman, B., & Brusak, I. (2021). On
dc.relation.referencesenthe accuracy of (quasi) geoid models with respect to
dc.relation.referencesenthe UELN/EVRS2000 height system. Modern
dc.relation.referencesenachievements of geodetic science and production.
dc.relation.referencesen№ I(41), 29–36. (in Ukrainian).
dc.relation.referencesenZayats, O., Navodych, M., Petrov, S., & Tretyak, K.
dc.relation.referencesen(2017). Precise tilt measurements for monitoring of
dc.relation.referencesenmine fields at Stebnyk potassium deposit area.
dc.relation.referencesenGeodynamics. 2 (23), 25–33. (in Ukrainian).
dc.relation.urifile:///C:/Users/AB68~1/AppData/Local/Temp/ktvsh_2014_10_6-4.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectсистема висот
dc.subjectмодель квазігеоїда
dc.subjectнівелювання
dc.subjectheight system
dc.subjectquasigeoid model
dc.subjectleveling
dc.subject.udc528.21
dc.subject.udc528.37
dc.titleAbout modernization of Ukrainian height system
dc.title.alternativeПро модернізацію Української висотної системи
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021n93_Trevoho_I-About_modernization_of_Ukrainian_13-26.pdf
Size:
833.34 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021n93_Trevoho_I-About_modernization_of_Ukrainian_13-26__COVER.png
Size:
515.19 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: