Елементи великого мультиплікативного порядку в розширених скінченних полях на основі модифікованого підходу ГАО
dc.citation.epage | 68 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи та мережі | |
dc.citation.spage | 63 | |
dc.citation.volume | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Попович, Б. Р. | |
dc.contributor.author | Popovych, B. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2021-04-20T11:42:00Z | |
dc.date.available | 2021-04-20T11:42:00Z | |
dc.date.created | 2019-03-01 | |
dc.date.issued | 2019-03-01 | |
dc.description.abstract | Підхід Гао побудови елементів великого порядку в довільних скінченних полях полягає у виборі зручного полінома, який задає розширення початкового простого поля. Цей вибір залежить від одного полінома-параметра. Тому вказаний підхід можна розглядати як використання опису скінченного поля з одним ступенем свободи. У цій роботі досліджено можливість поліпшення нижніх меж для порядків елементів у скінченних полях загального вигляду з використанням двох ступенів свободи. Виконано комп’ютерні обчислення в середовищі Maple, які б показали можливі виграші у цьому разі, та наведено відповідні результати. Елементи великого мультиплікативного порядку використовують у низці криптографічних примітивів (протокол Діффі-Хелмана, криптосистема Ель-Гамаля з відкритим ключем, цифровий підпис Ель-Гамаля). | |
dc.description.abstract | The Gao approach to construction of high order elements in arbitrary finite fields is to choose a convenient polynomial, which defines an extension of an initial prime field. This choice depends on one polynomial-parameter. That is why the mentioned approach can be considered as using of a finite field description with one degree of freedom. We explore in the paper the possibility of improvement of lower bound on element orders in finite fields of general form with using of two degrees of freedom. We have performed computer calculations in Maple environment, that would show possible winnings in this case, and given the correspondent results. Elements of high multiplicative order are used in a series of cryptographic primitives (Diffie-Hellman protocol, El-Gamal public key cryptosystem, El-Gamal digital signature). | |
dc.format.extent | 63-68 | |
dc.format.pages | 6 | |
dc.identifier.citation | Попович Б. Р. Елементи великого мультиплікативного порядку в розширених скінченних полях на основі модифікованого підходу ГАО / Б. Р. Попович // Комп’ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2019. — Том 1. — № 1. — С. 63–68. | |
dc.identifier.citationen | Popovych B. Elements of high multiplicative order in extended finite fields on a base of modified GAO approach / B. Popovych // Kompiuterni systemy ta merezhi. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 63–68. | |
dc.identifier.issn | 2707-2371 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56357 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи та мережі, 1 (1), 2019 | |
dc.relation.references | 1. Agrawal M., Kayal N., Saxena N. PRIMES is in P // Annals of Mathematics, vol. 160, no. 2, 2004, p. 781–793. | |
dc.relation.references | 2. Ahmadi O., Shparlinski I. E., Voloch J. F. Multiplicative order of Gauss periods // International Journal of Number Theory, vol. 6, no. 4, 2010, p. 877–882. | |
dc.relation.references | 3. Conflitti A. On elements of high order in finite fields // in Cryptography and Computational Number Theory, vol. 20 of Progr. Comput. Sci. Appl. Logic, Birkhauser, Basel, 2001, p. 11–14. | |
dc.relation.references | 4. Gao S. Elements of provable high orders in finite fields // Proceeding of American Math. Soc., vol. 127, no. 6, 1999, p. 1615–1623. | |
dc.relation.references | 5. Lidl R., Niederreiter H. Finite Fields. – Cambridge: Cambridge University Press, 1997. 755 P. | |
dc.relation.references | 6. Mullen G. L., Panario D. Handbook of finite fields. Boca Raton: CRC Press, 2013. 1068 P. | |
dc.relation.references | 7. Lambe T. A. Bounds on the Number of Feasible Solutions to a Knapsack Problem // SIAM Journal of Applied Mathematics, vol. 26, no. 2, 1974, p. 302–305. | |
dc.relation.references | 8. Popovych R. Elements of high order in finite fields of the form Fq[x]/Φr(x) // Finite Fields and Their Applications, vol. 18, no. 4, 2012, p. 700–710. | |
dc.relation.references | 9. Popovych R. Elements of high order in finite fields of the form Fq[x]/(xm-a) // Finite Fields and Their Applications, vol. 19, no. 1, 2013, p. 86–92. | |
dc.relation.references | 10. Popovych R. On elements of high order in general finite fields // Algebra and Discrete Mathematics, vol. 18, no. 2, 2014, p. 295–300. | |
dc.relation.references | 11. Popovych B. Kompyuterna perevirka prypushchennya Gao, povyazanogo z otrymannyam elementiv velykogo poryadku v skinchennuch polyakh // Lvivska politechnika, Kompyuterni systemy ta merezhi, No. 905, 2018, s. 108–110. | |
dc.relation.references | 12. Young M. On the multiplicative independence of rational iterates, Preprint, 2018, available at https://arxiv.org/abs/1708.00944. | |
dc.relation.referencesen | 1. Agrawal M., Kayal N., Saxena N. PRIMES is in P, Annals of Mathematics, vol. 160, no. 2, 2004, p. 781–793. | |
dc.relation.referencesen | 2. Ahmadi O., Shparlinski I. E., Voloch J. F. Multiplicative order of Gauss periods, International Journal of Number Theory, vol. 6, no. 4, 2010, p. 877–882. | |
dc.relation.referencesen | 3. Conflitti A. On elements of high order in finite fields, in Cryptography and Computational Number Theory, vol. 20 of Progr. Comput. Sci. Appl. Logic, Birkhauser, Basel, 2001, p. 11–14. | |
dc.relation.referencesen | 4. Gao S. Elements of provable high orders in finite fields, Proceeding of American Math. Soc., vol. 127, no. 6, 1999, p. 1615–1623. | |
dc.relation.referencesen | 5. Lidl R., Niederreiter H. Finite Fields, Cambridge: Cambridge University Press, 1997. 755 P. | |
dc.relation.referencesen | 6. Mullen G. L., Panario D. Handbook of finite fields. Boca Raton: CRC Press, 2013. 1068 P. | |
dc.relation.referencesen | 7. Lambe T. A. Bounds on the Number of Feasible Solutions to a Knapsack Problem, SIAM Journal of Applied Mathematics, vol. 26, no. 2, 1974, p. 302–305. | |
dc.relation.referencesen | 8. Popovych R. Elements of high order in finite fields of the form Fq[x]/Phr(x), Finite Fields and Their Applications, vol. 18, no. 4, 2012, p. 700–710. | |
dc.relation.referencesen | 9. Popovych R. Elements of high order in finite fields of the form Fq[x]/(xm-a), Finite Fields and Their Applications, vol. 19, no. 1, 2013, p. 86–92. | |
dc.relation.referencesen | 10. Popovych R. On elements of high order in general finite fields, Algebra and Discrete Mathematics, vol. 18, no. 2, 2014, p. 295–300. | |
dc.relation.referencesen | 11. Popovych B. Kompyuterna perevirka prypushchennya Gao, povyazanogo z otrymannyam elementiv velykogo poryadku v skinchennuch polyakh, Lvivska politechnika, Kompyuterni systemy ta merezhi, No. 905, 2018, s. 108–110. | |
dc.relation.referencesen | 12. Young M. On the multiplicative independence of rational iterates, Preprint, 2018, available at https://arxiv.org/abs/1708.00944. | |
dc.relation.uri | https://arxiv.org/abs/1708.00944 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2019 | |
dc.rights.holder | © Попович Б. Р., 2019 | |
dc.subject | криптографічний захист інформації | |
dc.subject | скінченне поле | |
dc.subject | порядок елемента | |
dc.subject | ступінь свободи | |
dc.subject | cryptographic information protection | |
dc.subject | finite field | |
dc.subject | order of element | |
dc.subject | degree of freedom | |
dc.subject.udc | 681.322 | |
dc.title | Елементи великого мультиплікативного порядку в розширених скінченних полях на основі модифікованого підходу ГАО | |
dc.title.alternative | Elements of high multiplicative order in extended finite fields on a base of modified GAO approach | |
dc.type | Article |
Files
License bundle
1 - 1 of 1