Electrochemical Synthesis of Peroxyacetic Acid on Pt/PtO and PbO2 Anodes

dc.citation.epage138
dc.citation.issue2
dc.citation.spage135
dc.citation.volume14
dc.contributor.affiliationNational Technical University “Kharkiv Polytechnic Institute”
dc.contributor.authorBilous, Tetiana
dc.contributor.authorTulskaya, Alena
dc.contributor.authorRyshchenko, Igor
dc.contributor.authorChahine, Issam
dc.contributor.authorBairachnyi, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-12-30T08:53:15Z
dc.date.available2020-12-30T08:53:15Z
dc.date.created2020-01-24
dc.date.issued2020-01-24
dc.description.abstractВивчена кінетика анодних процесів на Pt/PtO та PbO2 анодах у водних розчинах оцтової кислоти. Встановлено, що додавання сульфатної кислоти має каталітичний ефект в електрохімічному синтезі пероксиоцтової кислоти. Обґрунтовано вибір промоторів утворення пероксичастинок. Виявлено, що I–, Cl– (вихід за струмом 1.2–1.5 %) частинки є найбільш ефективними для платинового аноду та I–, F–(вихід за струмом 0.50–0.55 %) – найбільш ефективні для диоксид свинцевого аноду.
dc.description.abstractThe kinetics of anodic processes on Pt/PtO and PbO2 anodes has been studied in water solutions of acetic acid. The addition of sulfuric acid has a catalytic effect in the electrochemical synthesis of peroxyacetic acid. The choice of promoters of peroxide-particles formation has been proved. I–, Cl–(current efficiency is 1.2–1.5 %) particles have been defined as the most effective for platinum anode and I–, F–(current efficiency is 0.50–0.55 %) have been defined as the most effective for lead-dioxide anode.
dc.format.extent135-138
dc.format.pages4
dc.identifier.citationElectrochemical Synthesis of Peroxyacetic Acid on Pt/PtO and PbO2 Anodes / Tetiana Bilous, Alena Tulskaya, Igor Ryshchenko, Issam Chahine, Volodymyr Bairachnyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 135–138.
dc.identifier.citationenElectrochemical Synthesis of Peroxyacetic Acid on Pt/PtO and PbO2 Anodes / Tetiana Bilous, Alena Tulskaya, Igor Ryshchenko, Issam Chahine, Volodymyr Bairachnyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 135–138.
dc.identifier.doidoi.org/10.23939/chcht14.02.135
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55781
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (14), 2020
dc.relation.references[1] Dul’neva L., Moskvin A.: Russ. J. Gen. Chem., 2005, 75, 1125. https://doi.org/10.1007/s11176-005-0378-8
dc.relation.references[2] Zhao X., Zhang T., Zhou Y., Liu D.: J. Mol. Catal. A, 2007, 271, 246. https://doi.org/10.1016/j.molcata.2007.03.012
dc.relation.references[3] Zhao X., Cheng K., Hao J., Liu D.: J. Mol. Catal. A, 2008, 284, 58. https://doi.org/10.1016/j.molcata.2008.01.003
dc.relation.references[4] Zhao X., Zhang T., Zhou Y., Liu D.: Chinese J. Process Eng., 2008, 8, 35.
dc.relation.references[5] Sun X., Zhao X., Du W., Liu D.: Chinese J. Chem. Eng., 2011, 19, 964. https://doi.org/10.1016/S1004-9541(11)60078-5
dc.relation.references[6] Zhang T., Luo J., Chuang K., Zhong L.: Chinese J. Chem. Eng., 2007, 15, 320. https://doi.org/10.1016/S1004-9541(07)60087-1
dc.relation.references[7] Moraleda I., Llanos J., Sáez C. et al.: Electrochem. Commun., 2016, 73, 1. https://doi.org/10.1016/j.elecom.2016.10.010
dc.relation.references[8] Saha M., Denggerile A., Nishiki Y. et al.: Electrochem. Commun., 2003, 5, 445. https://doi.org/10.1016/S1388-2481(03)00097-3
dc.relation.references[9] Cotillas S., Sánchez-Carretero A., Cañizares P. et al.: Ind. Eng. Chem. Res., 2011, 50, 10889. https://doi.org/10.1021/ie2009422
dc.relation.references[10] Ruiz-Ruiz E., Meas Y., Ortega-Borges R., Baizabal J.: Surf. Eng. Appl. Electrochem., 2014, 50, 478. https://doi.org/10.3103/S106837551406009X
dc.relation.references[11] Cañizares P., Sáez C., Sánchez-Carretero A., Rodrigo M.: J. Appl. Electrochem., 2009, 39, 2143. https://doi.org/10.1007/s10800-009-9792-7
dc.relation.references[12] Bilous T., Tulsky G.: Kinetics of Anodic Processes in Acetic Acid Solutions. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Technical Electrochemistry. KNUTD, Kyiv 2016, 244-248.
dc.relation.references[13] Bilous T., Tulskaya A., Matrunchyk O.: The Choice of Anode Material for the Electrochemical Synthesis of Peroxyacetic Acid. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Applied Electrochemistry. KNUTD, Kyiv 2017, 230-234.
dc.relation.references[14] Bilous T., Tulsky G., Korohodska A., Podustov M.: Visnyk NTU “KhPI”, 2017, 48, 24.
dc.relation.references[15] Khidirov Sh.: Russ. J. Electrochem., 1992, 2, 158.
dc.relation.references[16] Khidirov Sh., Khibiev Kh.: Russ. J. Electrochem., 2005, 11,1176. https://doi.org/10.1007/s11175-005-0198-5
dc.relation.referencesen[1] Dul’neva L., Moskvin A., Russ. J. Gen. Chem., 2005, 75, 1125. https://doi.org/10.1007/s11176-005-0378-8
dc.relation.referencesen[2] Zhao X., Zhang T., Zhou Y., Liu D., J. Mol. Catal. A, 2007, 271, 246. https://doi.org/10.1016/j.molcata.2007.03.012
dc.relation.referencesen[3] Zhao X., Cheng K., Hao J., Liu D., J. Mol. Catal. A, 2008, 284, 58. https://doi.org/10.1016/j.molcata.2008.01.003
dc.relation.referencesen[4] Zhao X., Zhang T., Zhou Y., Liu D., Chinese J. Process Eng., 2008, 8, 35.
dc.relation.referencesen[5] Sun X., Zhao X., Du W., Liu D., Chinese J. Chem. Eng., 2011, 19, 964. https://doi.org/10.1016/S1004-9541(11)60078-5
dc.relation.referencesen[6] Zhang T., Luo J., Chuang K., Zhong L., Chinese J. Chem. Eng., 2007, 15, 320. https://doi.org/10.1016/S1004-9541(07)60087-1
dc.relation.referencesen[7] Moraleda I., Llanos J., Sáez C. et al., Electrochem. Commun., 2016, 73, 1. https://doi.org/10.1016/j.elecom.2016.10.010
dc.relation.referencesen[8] Saha M., Denggerile A., Nishiki Y. et al., Electrochem. Commun., 2003, 5, 445. https://doi.org/10.1016/S1388-2481(03)00097-3
dc.relation.referencesen[9] Cotillas S., Sánchez-Carretero A., Cañizares P. et al., Ind. Eng. Chem. Res., 2011, 50, 10889. https://doi.org/10.1021/ie2009422
dc.relation.referencesen[10] Ruiz-Ruiz E., Meas Y., Ortega-Borges R., Baizabal J., Surf. Eng. Appl. Electrochem., 2014, 50, 478. https://doi.org/10.3103/S106837551406009X
dc.relation.referencesen[11] Cañizares P., Sáez C., Sánchez-Carretero A., Rodrigo M., J. Appl. Electrochem., 2009, 39, 2143. https://doi.org/10.1007/s10800-009-9792-7
dc.relation.referencesen[12] Bilous T., Tulsky G., Kinetics of Anodic Processes in Acetic Acid Solutions. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Technical Electrochemistry. KNUTD, Kyiv 2016, 244-248.
dc.relation.referencesen[13] Bilous T., Tulskaya A., Matrunchyk O., The Choice of Anode Material for the Electrochemical Synthesis of Peroxyacetic Acid. [in:] Barsukov V. (Ed.), Promising Materials and Processes in Applied Electrochemistry. KNUTD, Kyiv 2017, 230-234.
dc.relation.referencesen[14] Bilous T., Tulsky G., Korohodska A., Podustov M., Visnyk NTU "KhPI", 2017, 48, 24.
dc.relation.referencesen[15] Khidirov Sh., Russ. J. Electrochem., 1992, 2, 158.
dc.relation.referencesen[16] Khidirov Sh., Khibiev Kh., Russ. J. Electrochem., 2005, 11,1176. https://doi.org/10.1007/s11175-005-0198-5
dc.relation.urihttps://doi.org/10.1007/s11176-005-0378-8
dc.relation.urihttps://doi.org/10.1016/j.molcata.2007.03.012
dc.relation.urihttps://doi.org/10.1016/j.molcata.2008.01.003
dc.relation.urihttps://doi.org/10.1016/S1004-9541(11)60078-5
dc.relation.urihttps://doi.org/10.1016/S1004-9541(07)60087-1
dc.relation.urihttps://doi.org/10.1016/j.elecom.2016.10.010
dc.relation.urihttps://doi.org/10.1016/S1388-2481(03)00097-3
dc.relation.urihttps://doi.org/10.1021/ie2009422
dc.relation.urihttps://doi.org/10.3103/S106837551406009X
dc.relation.urihttps://doi.org/10.1007/s10800-009-9792-7
dc.relation.urihttps://doi.org/10.1007/s11175-005-0198-5
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Bilous T., Tulskaya A., Ryshchenko I., Chahine I., Bairachnyi V., 2020
dc.subjectпероксиоцтова кислота
dc.subjectоцтова кислота
dc.subjectплатиновий анод
dc.subjectдиоксид свинцевий анод
dc.subjectпромотор
dc.subjectперокси-частинки
dc.subjectperoxyacetic acid
dc.subjectacetic acid
dc.subjectplatinum anode
dc.subjectlead-dioxide anode
dc.subjectpromoter
dc.subjectperoxide particles
dc.titleElectrochemical Synthesis of Peroxyacetic Acid on Pt/PtO and PbO2 Anodes
dc.title.alternativeЕлектрохімічний синтез пероксиоцтової кислоти на Pt/PtO та PbO2 анодах
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v14n2_Bilous_T-Electrochemical_Synthesis_135-138.pdf
Size:
328.26 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v14n2_Bilous_T-Electrochemical_Synthesis_135-138__COVER.png
Size:
523.33 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.01 KB
Format:
Plain Text
Description: