Asymptotic analysis of the Korteweg–de Vries equation by the nonlinear WKB technique

dc.citation.epage378
dc.citation.issue3
dc.citation.spage368
dc.contributor.affiliationКиївський національний університет імені Тараса Шевченка
dc.contributor.affiliationІнститут кібернетики ім. В. М. Глушкова НАН України
dc.contributor.affiliationTaras Shevchenko National University of Kyiv
dc.contributor.affiliationV. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine
dc.contributor.authorЛяшко, С. І.
dc.contributor.authorСамойленко, В. Г.
dc.contributor.authorСамойленко, Ю. І.
dc.contributor.authorЛяшко, Н. І.
dc.contributor.authorLyashko, S. I.
dc.contributor.authorSamoilenko, V. H.
dc.contributor.authorSamoilenko, Yu. I.
dc.contributor.authorLyashko, N. I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-25T07:19:13Z
dc.date.available2023-10-25T07:19:13Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractДана стаття стосується побудови асимптотичних солітоноподібних розв’язків для рівняння Кортевега–де Фріза зі змінними коефіцієнтами та малим параметром при старшій похідній. Такі асимптотичні розв’язки вивчаються для широкого класу рівнянь з частинними похідними, які отримуються при математичному моделюванні процесів і явищ для випадку неоднорідних (за просторовою і часовою змінними) середовищ за наявності малої дисперсії і які є узагальненням певних інтегровних моделей. Шуканий розв’язок будується за допомогою нелінійного методу ВКБ, відповідно до якого асимптотичний розв’язок зображується у вигляді суми регулярної і сингулярної частин асимптотики. Якщо регулярна частина такого наближеного розв’язку математично описує фон, на якому відбувається хвильовий процес, то сингулярна частина цього розв’язку відображає характерні особливості, які пов’язані із солітонними властивостями рівняння Кортевега–де Фріза. Розглядається новий тип асимптотичних солітоноподібних розв’язків, коли головний доданок сингулярної частини шуканого асимптотичного розв’язку є швидко спадною функцією фазової змінної τ, а інші доданки є функціями сходинкового типу, тобто мають певну асимптотику на нескінченності. З огляду на ці властивості побудований асимптотичний розв’язок називається асимптотичним солітоноподібним розв’язком сходинкового типу. Представлено алгоритм побудови асимптотичних розв’язків даного типу, детально описано знаходження регулярної і сингулярної частин асимптотики, встановлено точність, з якою головний член побудованого асимптотичного розв’язку задовольняє вихідне рівняння.
dc.description.abstractThe paper deals with the Korteweg–de Vries equation with variable coefficients and a small parameter at the highest derivative. The non-linear WKB technique has been used to construct the asymptotic step-like solution to the equation. Such a solution contains regular and singular parts of the asymptotics. The regular part of the solution describes the background of the wave process, while its singular part reflects specific features associated with soliton properties. The singular part of the searched asymptotic solution has the main term that, like the soliton solution, is the quickly decreasing function of the phase variable τ. In contrast, other terms do not possess this property. An algorithm of constructing asymptotic step-like solutions to the singularly perturbed Korteweg–de Vries equation with variable coefficients is presented. In some sense, the constructed asymptotic solution is similar to the soliton solution to the Korteweg–de Vries equation ut + uux + uxxx = 0. Statement on the accuracy of the main term of the asymptotic solution is proven.
dc.format.extent368-378
dc.format.pages11
dc.identifier.citationAsymptotic analysis of the Korteweg–de Vries equation by the nonlinear WKB technique / S. I. Lyashko, V. H. Samoilenko, Yu. I. Samoilenko, N. I. Lyashko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 368–378.
dc.identifier.citationenAsymptotic analysis of the Korteweg–de Vries equation by the nonlinear WKB technique / S. I. Lyashko, V. H. Samoilenko, Yu. I. Samoilenko, N. I. Lyashko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 368–378.
dc.identifier.doidoi.org/10.23939/mmc2021.03.368
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60409
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 3 (8), 2021
dc.relation.references[1] Korteweg D. J., de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 39 (240), 422–443 (1895).
dc.relation.references[2] Russel J. S. Report on waves. Reports Fourteenth Meeting of the British Association. 311 (1844).
dc.relation.references[3] Novikov S., Manakov S. V., Pitaevskii L. P., Zakharov V. E. Theory of Solitons. The Inverse Scattering Method. Springer US, New York (1984).
dc.relation.references[4] Zabusky N. J., Kruskal M. D. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (6), 240–243 (1965).
dc.relation.references[5] Dodd R. K., Morris H. C., Eilbeck J. C., Gibbon J.D. Solitons and nonlinear wave equations. Academic Press, New York (1982).
dc.relation.references[6] Blackmore D., Prykarpatsky A., Samoylenko V. Nonlinear dynamical systems of mathematical physics. Spectral and symplectic integrability analysis. World Scientific (2011).
dc.relation.references[7] Bona J. L., Smith R. The initial value problem for the Korteweg–de Vries equation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 278, 555–601 (1975).
dc.relation.references[8] Kato T. On the Korteweg-de Vries equation. Manuscripta Math. 28, 89–99 (1979).
dc.relation.references[9] Faminskii A. V. Cauchy problem for the Korteweg-de Vries equation and its generalizations. Journal of Soviet Mathematics. 50, 1381–1420 (1990).
dc.relation.references[10] Egorova I., Grunert K., Teschl G. On Cauchy problem for the Korteweg-de Vries equation with step-like finite gap initial data. I. Schwartz-type perturbations. Nonlinearity. 22 (6), 1431–1457 (2009).
dc.relation.references[11] Faddeev L. D., Takhtadjan L. A. Hamiltonian methods in the theory of solitons. Springer, New York, Berlin (1986).
dc.relation.references[12] Mitropol’skij A. Yu., Bogolyubov N. N. (jr.), Prikarpatskij A. K., Samojlenko V. G. Integrable dynamical systems: spectral and differential-geometric aspects. Naukova Dumka, Kiev (1986).
dc.relation.references[13] Prykarpatsky A. K., Mykytyuk I. V. Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects. Kluwer Academic Publishers, the Netherlands (1998).
dc.relation.references[14] Mokhov O. I. Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations (Second Edition: Reviews in Mathematics and Mathematical Physics, Vol. 13, Part 2). Cambridge Scientific Publishers Ltd, Cambridge (2009).
dc.relation.references[15] Samoilenko V. G., Samoilenko Yu. I. To the method of the boundary layer and the Hugoniot-type condition for the Korteweg-de Vries equation. Vesnik of Brest University. Series 4. Physics. Mathematics. 2, 111–129 (2010), (in Russian).
dc.relation.references[16] Olver P. J., Sokolov V. V. Integrable evolution equations on associative algebras. Communications in Mathematical Physics. 193, 245–268 (1998).
dc.relation.references[17] Flaschka H., Forest M. G., McLaughlin D. W. Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation. Comm. Pure Appl. Math. 33 (6), 739–784 (1980).
dc.relation.references[18] Prikarpatskij A. K., Samojlenko V. G. Averaging method and equations of ergodic deformations for nonlinear evolution equations. Preprint IM AN USSR 81.44, 31 p. Institute of Mathematics of AS of USSR, Kyiv (1981).
dc.relation.references[19] Miura R. M., Kruskal M. D. Application of nonlinear WKB-method to the Korteweg–de Vries equation. SIAM Appl. Math. 26 (2), 376–395 (1974).
dc.relation.references[20] Maslov V. P., Omel’yanov G. A. Asymptotic soliton-form solutions of equations with small dispersion. Russian Mathematical Surveys. 36 (3), 73–149 (1981).
dc.relation.references[21] Maslov V. P., Omel’yanov G. O. Geometric asymptotics for PDE. American Math. Society, Providence (2001).
dc.relation.references[22] Lax P. D., Levermore C. D. The small dispersion limit of the Korteweg–de Vries equation. I. Comm. Pure Appl. Math. 36 (3), 253–290 (1983).
dc.relation.references[23] Lax P. D., Levermore C. D. The small dispersion limit of the Korteweg–de Vries equation. ii. Comm. Pure Appl. Math. 36 (4), 571–593 (1983).
dc.relation.references[24] Lax P. D., Levermore C. D. The small dispersion limit of the Korteweg–de Vries equation. III. Comm. Pure Appl. Math. 36 (6), 809–829 (1983).
dc.relation.references[25] Samoilenko V. H., Samoilenko Yu. I. Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg-de Vries equation with variable coefficients. I. Ukrainian Mathematical Journal. 64 (7), 1109–1127 (2012).
dc.relation.references[26] Samoilenko V. H., Samoilenko Yu. I. Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg-de Vries equation with variable coefficients. II. Ukrainian Mathematical Journal. 64 (8), 1241–1259 (2013).
dc.relation.references[27] Samoilenko V., Samoilenko Yu. Asymptotic soliton-like solutions to the singularly perturbed Benjamin–Bona–Mahony equation with variable coefficients. Journal of Mathematical Physics. 60 (1), 011501-1–011501-13 (2019).
dc.relation.references[28] Ablowitz M. J. Nonlinear dispersive waves. Asymptotic analysis and solitons. Cambridge University Press, Cambridge (2011).
dc.relation.references[29] Samoilenko V. H., Samoilenko Yu. I. Asymptotic expansions for one-phase soliton-type solutions of the Korteweg-de Vries equation with variable coefficients. Ukranian Mathematical Journal. 57 (1), 132–148 (2005).
dc.relation.references[30] Samoilenko V. H., Samoilenko Yu. I., Limarchenko V. O., Vovk V. S., Zaitseva K. S. Asymptotic solutions of soliton-type of the Korteweg-de Vries equation with variable coefficients and singular perturbation. Mathematical Modeling and Computing. 6 (2), 374–385 (2019).
dc.relation.references[31] Kapustian O. A., Nakonechnyi O. G. Approximate minimax estimation of functionals of solutions to the wave equation under nonlinear observations. Cybernetices and Systems Analysis. 56 (5), 793—801 (2020).
dc.relation.references[32] Verovkina G., Gapyak I., Samoilenko V., Telyatnik T. Asymptotic analysis of solutions to equations with regular perturbation. Bulletin of Taras Shevchenko National University of Kyiv. Mathematics. Mechanics. 40 (1), 11–15 (2019).
dc.relation.references[33] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Gapyak I. V., Lyashko N. I., Orlova M. S. Global asymptotic step-type solutions to singularly perturbed Korteweg–de Vries equation with variable coefficients. Journal of Automation and Information Sciences. 52 (9), 27–38 (2020).
dc.relation.referencesen[1] Korteweg D. J., de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 39 (240), 422–443 (1895).
dc.relation.referencesen[2] Russel J. S. Report on waves. Reports Fourteenth Meeting of the British Association. 311 (1844).
dc.relation.referencesen[3] Novikov S., Manakov S. V., Pitaevskii L. P., Zakharov V. E. Theory of Solitons. The Inverse Scattering Method. Springer US, New York (1984).
dc.relation.referencesen[4] Zabusky N. J., Kruskal M. D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (6), 240–243 (1965).
dc.relation.referencesen[5] Dodd R. K., Morris H. C., Eilbeck J. C., Gibbon J.D. Solitons and nonlinear wave equations. Academic Press, New York (1982).
dc.relation.referencesen[6] Blackmore D., Prykarpatsky A., Samoylenko V. Nonlinear dynamical systems of mathematical physics. Spectral and symplectic integrability analysis. World Scientific (2011).
dc.relation.referencesen[7] Bona J. L., Smith R. The initial value problem for the Korteweg–de Vries equation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 278, 555–601 (1975).
dc.relation.referencesen[8] Kato T. On the Korteweg-de Vries equation. Manuscripta Math. 28, 89–99 (1979).
dc.relation.referencesen[9] Faminskii A. V. Cauchy problem for the Korteweg-de Vries equation and its generalizations. Journal of Soviet Mathematics. 50, 1381–1420 (1990).
dc.relation.referencesen[10] Egorova I., Grunert K., Teschl G. On Cauchy problem for the Korteweg-de Vries equation with step-like finite gap initial data. I. Schwartz-type perturbations. Nonlinearity. 22 (6), 1431–1457 (2009).
dc.relation.referencesen[11] Faddeev L. D., Takhtadjan L. A. Hamiltonian methods in the theory of solitons. Springer, New York, Berlin (1986).
dc.relation.referencesen[12] Mitropol’skij A. Yu., Bogolyubov N. N. (jr.), Prikarpatskij A. K., Samojlenko V. G. Integrable dynamical systems: spectral and differential-geometric aspects. Naukova Dumka, Kiev (1986).
dc.relation.referencesen[13] Prykarpatsky A. K., Mykytyuk I. V. Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects. Kluwer Academic Publishers, the Netherlands (1998).
dc.relation.referencesen[14] Mokhov O. I. Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations (Second Edition: Reviews in Mathematics and Mathematical Physics, Vol. 13, Part 2). Cambridge Scientific Publishers Ltd, Cambridge (2009).
dc.relation.referencesen[15] Samoilenko V. G., Samoilenko Yu. I. To the method of the boundary layer and the Hugoniot-type condition for the Korteweg-de Vries equation. Vesnik of Brest University. Series 4. Physics. Mathematics. 2, 111–129 (2010), (in Russian).
dc.relation.referencesen[16] Olver P. J., Sokolov V. V. Integrable evolution equations on associative algebras. Communications in Mathematical Physics. 193, 245–268 (1998).
dc.relation.referencesen[17] Flaschka H., Forest M. G., McLaughlin D. W. Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation. Comm. Pure Appl. Math. 33 (6), 739–784 (1980).
dc.relation.referencesen[18] Prikarpatskij A. K., Samojlenko V. G. Averaging method and equations of ergodic deformations for nonlinear evolution equations. Preprint IM AN USSR 81.44, 31 p. Institute of Mathematics of AS of USSR, Kyiv (1981).
dc.relation.referencesen[19] Miura R. M., Kruskal M. D. Application of nonlinear WKB-method to the Korteweg–de Vries equation. SIAM Appl. Math. 26 (2), 376–395 (1974).
dc.relation.referencesen[20] Maslov V. P., Omel’yanov G. A. Asymptotic soliton-form solutions of equations with small dispersion. Russian Mathematical Surveys. 36 (3), 73–149 (1981).
dc.relation.referencesen[21] Maslov V. P., Omel’yanov G. O. Geometric asymptotics for PDE. American Math. Society, Providence (2001).
dc.relation.referencesen[22] Lax P. D., Levermore C. D. The small dispersion limit of the Korteweg–de Vries equation. I. Comm. Pure Appl. Math. 36 (3), 253–290 (1983).
dc.relation.referencesen[23] Lax P. D., Levermore C. D. The small dispersion limit of the Korteweg–de Vries equation. ii. Comm. Pure Appl. Math. 36 (4), 571–593 (1983).
dc.relation.referencesen[24] Lax P. D., Levermore C. D. The small dispersion limit of the Korteweg–de Vries equation. III. Comm. Pure Appl. Math. 36 (6), 809–829 (1983).
dc.relation.referencesen[25] Samoilenko V. H., Samoilenko Yu. I. Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg-de Vries equation with variable coefficients. I. Ukrainian Mathematical Journal. 64 (7), 1109–1127 (2012).
dc.relation.referencesen[26] Samoilenko V. H., Samoilenko Yu. I. Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg-de Vries equation with variable coefficients. II. Ukrainian Mathematical Journal. 64 (8), 1241–1259 (2013).
dc.relation.referencesen[27] Samoilenko V., Samoilenko Yu. Asymptotic soliton-like solutions to the singularly perturbed Benjamin–Bona–Mahony equation with variable coefficients. Journal of Mathematical Physics. 60 (1), 011501-1–011501-13 (2019).
dc.relation.referencesen[28] Ablowitz M. J. Nonlinear dispersive waves. Asymptotic analysis and solitons. Cambridge University Press, Cambridge (2011).
dc.relation.referencesen[29] Samoilenko V. H., Samoilenko Yu. I. Asymptotic expansions for one-phase soliton-type solutions of the Korteweg-de Vries equation with variable coefficients. Ukranian Mathematical Journal. 57 (1), 132–148 (2005).
dc.relation.referencesen[30] Samoilenko V. H., Samoilenko Yu. I., Limarchenko V. O., Vovk V. S., Zaitseva K. S. Asymptotic solutions of soliton-type of the Korteweg-de Vries equation with variable coefficients and singular perturbation. Mathematical Modeling and Computing. 6 (2), 374–385 (2019).
dc.relation.referencesen[31] Kapustian O. A., Nakonechnyi O. G. Approximate minimax estimation of functionals of solutions to the wave equation under nonlinear observations. Cybernetices and Systems Analysis. 56 (5), 793-801 (2020).
dc.relation.referencesen[32] Verovkina G., Gapyak I., Samoilenko V., Telyatnik T. Asymptotic analysis of solutions to equations with regular perturbation. Bulletin of Taras Shevchenko National University of Kyiv. Mathematics. Mechanics. 40 (1), 11–15 (2019).
dc.relation.referencesen[33] Lyashko S. I., Samoilenko V. H., Samoilenko Yu. I., Gapyak I. V., Lyashko N. I., Orlova M. S. Global asymptotic step-type solutions to singularly perturbed Korteweg–de Vries equation with variable coefficients. Journal of Automation and Information Sciences. 52 (9), 27–38 (2020).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectрівняння Кортевега–де Фріза
dc.subjectнелінійний метод ВКБ
dc.subjectасимптотичний аналіз
dc.subjectсингулярне збурення
dc.subjectсолітон
dc.subjectасимптотичний розв'язок
dc.subjectKorteweg–de Vries equation
dc.subjectnonlinear WKB technique
dc.subjectasymptotic analysis
dc.subjectsingular perturbation
dc.subjectsoliton
dc.subjectasymptotic solution
dc.titleAsymptotic analysis of the Korteweg–de Vries equation by the nonlinear WKB technique
dc.title.alternativeАсимптотичний аналіз рівняння Кортевега–де Фріза за допомогою нелінійного методу ВКБ
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n3_Lyashko_S_I-Asymptotic_analysis_of_368-378.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n3_Lyashko_S_I-Asymptotic_analysis_of_368-378__COVER.png
Size:
433.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: