Mathematic and computer modeling of cohesion effect forces on spatial deformation processes of soil massif
dc.citation.epage | 205 | |
dc.citation.issue | 1 | |
dc.citation.spage | 196 | |
dc.contributor.affiliation | Нацiональний унiверситет «Острозька академiя» | |
dc.contributor.affiliation | Нацiональний унiверситет водного господарства та природокористування | |
dc.contributor.affiliation | The National University of Ostroh Academy | |
dc.contributor.affiliation | The National University of Water and Environmental Engineering | |
dc.contributor.author | Власюк, А. П. | |
dc.contributor.author | Жуковська, Н. А. | |
dc.contributor.author | Жуковський, В. В. | |
dc.contributor.author | Vlasyuk, A. P. | |
dc.contributor.author | Zhukovska, N. A. | |
dc.contributor.author | Zhukovskyy, V. V. | |
dc.date.accessioned | 2023-03-06T12:28:19Z | |
dc.date.available | 2023-03-06T12:28:19Z | |
dc.date.created | 2020-01-01 | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | Стаття присвячена моделюванню та розв’язанню задачi впливу сил зв’язностi на деформацiйнi процеси грунтового масиву. Просторовi деформацiйнi процеси грунтового масиву описуються компонентами змiщень, нормальних i дотичних деформацiй та напружень. Також поставлена крайова задача включає рiвняння тепло- та масоперенесення в грунтовому масивi. Розглянуто функцiї сил зв’язностi в грунтовому масивi, що мають лiнiйний, квадратичний та логарифмiчний вигляди. Наведено результати дослiджень у виглядi графiкiв поверхонь змiщень та процентних спiввiдношень шуканих функцiй. Як показали проведенi чисельнi експерименти, в середньому найбiльший вплив на змiщення мають сили зв’язностi лiнiйного вигляду, а найменший — логарифiчного. | |
dc.description.abstract | The article presents the modeling and solving of the deformation processes problem of the soil massif under the forces of cohesion effect. Spatial deformation processes of soil massif are described by the components of displacements, by normal and tangential stresses, and by strains. Also, the corresponding boundary value problem includes the mass and heat transfer equations in a soil massif. The functions of cohesion forces in the soil are considered that have linear, quadratic and logarithmic dependence. The results of the studies are presented in the form of graphs of displacement surfaces as well as in percentage ratios of the corresponding functions. Numerical experiments have shown that on average the forces of linear dependence have the greatest influence on the displacement while the logarithmic dependence provides the least effect. | |
dc.format.extent | 196-205 | |
dc.format.pages | 10 | |
dc.identifier.citation | Vlasyuk A. P. Mathematic and computer modeling of cohesion effect forces on spatial deformation processes of soil massif / Vlasyuk A. P., Zhukovska N. A., Zhukovskyy V. V. // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 196–205. | |
dc.identifier.citationen | Vlasyuk A. P., Zhukovska N. A., Zhukovskyy V. V. (2020) Mathematic and computer modeling of cohesion effect forces on spatial deformation processes of soil massif. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 196-205. | |
dc.identifier.doi | DOI: 10.23939/mmc2020.01.196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57515 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (7), 2020 | |
dc.relation.references | [1] Sergienko I. V., Skopetskii V. V., Deineka V. S. Mathematical Simulation and Investigation of Processes in Inhomogeneous Media. Naukova Dumka, Kiev (1991), (in Ukarainian). | |
dc.relation.references | [2] Hetnarski R. B. Encyclopedia of thermal stresses. Springer Reference, Dordrecht (2014). | |
dc.relation.references | [3] Vlasyuka A. P., Zhukovskaya N. A. Mathematical Simulation of the Stressed-Strained State of the Foundation of Earth Dams with an Open Surface Under the Influence of Heat and Mass Transfer in the TwoDimensional Case. Journal of Engineering Physics and Thermophysics. 88 (2), 329–341 (2015). | |
dc.relation.references | [4] Vlasyuk A. P., Zhukovska N. A., Zhukovskyy V. V., Klos-Witkowska A., Pazdriy I., Iatsykovska U. Mathematical modelling of three-dimensional problem of soil mass stressed-strained state considering mass and heat transfer: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Vol. 1, 265–269 (2017). | |
dc.relation.references | [5] Vlasyuk A. P., Borowik B., Zhukovska N. A., Zhukovskyy V. V., Karpinskyi V. Computer modelling of heat and mass transfer effect on the three-dimensional stressed-strained state of soil massif. 18th International Multidisciplinary Scientific Geoconference SGEM 2018. Vol. 18, No. 1.2, 153–160 (2018). | |
dc.relation.references | [6] Vlasyuk A., Zhukovska N., Zhukovskyy V., Hesham R. Mathematical Modelling of Spatial Deformation Process of Soil Massif with Free Surface. Advances in intelligent systems and computing IV. Vol. 1080, 107–120(2020). | |
dc.relation.references | [7] Kuzlo M. T. Investigation of the effect of the concentration of saline solutions on clutch forces in clay soils. Hydrotechnical construction. 5, 51–53 (2013). | |
dc.relation.references | [8] Kuzlo M. T., Moshynskyi V. S., Martyniuk P. M. Mathematical modelling of soil Massif’s deformations under its drainage. International Journal of Apllied Mathematics. 31 (6), 751–762 (2019). | |
dc.relation.references | [9] Remez N., Osipova T., Kraychuk O., Kraychuk S. Simulation of the solid waste landfill settlement taking into account underlying soil. Eastern-European Journal of Enterprise Technologies. 3 (10), 12–17 (2016). | |
dc.relation.references | [10] Kaliukh I., Trofymchuk O., Lebid O. Numerical Solution of Two-Point Static Problems for Distributed Extended Systems by Means of the Nelder–Mead Method. Cybernetics and Systems Analysis. 55 (4),616–624 (2019). | |
dc.relation.references | [11] Vodka O. Computation tool for assessing the probability characteristics of the stress state of the pipeline part defected by pitting corrosion. Advances in Engineering Software. 90, 159–168 (2015). | |
dc.relation.references | [12] Dyyak I. I., Rubino B., Savula Y. H., Styahar A. O. Numerical analysis of heterogeneous mathematical model of elastic body with thin inclusion by combined BEM and FEM. Mathematical Modeling and Computing.6 (2), 239–250 (2019). | |
dc.relation.references | [13] Dassios I., O’Keeffe G., Jivkov A. P. A mathematical model for elasticity using calculus on discrete manifolds. Mathematical Methods in the Applied Sciences. 41 (18), 9057–9070 (2018). | |
dc.relation.references | [14] Safonyk A., Martynov S., Kunytskyi S., Pinchuk O. Mathematical modelling of regeneration the filtering media bed of granular filters. Advances in Modelling and Analysis. 73 (2), 72–78 (2018). | |
dc.relation.references | [15] Karnaukhov V. G. On A. D. Kovalenko’s Research Works on the Thermomechanics of Coupled Fields in Materials and Structural Members and Its Further Development. International Applied Mechanics. 41(9), 967–975 (2005). | |
dc.relation.references | [16] Samarskii A. A. The theory of difference schemes. Vol. 240 of Pure and applied mathematics. Marcel Dekker, New York (2001). | |
dc.relation.references | [17] Vlasyuk A. P., Kuzlo M. T. Experimental investigations of some of the parameters of filtration of salt solutions in sandy soils. Melioration and Water Handling Facilities: Interdepartmental Thematic Scientific Collection. 43–46 (2000), (in Ukrainian). | |
dc.relation.referencesen | [1] Sergienko I. V., Skopetskii V. V., Deineka V. S. Mathematical Simulation and Investigation of Processes in Inhomogeneous Media. Naukova Dumka, Kiev (1991), (in Ukarainian). | |
dc.relation.referencesen | [2] Hetnarski R. B. Encyclopedia of thermal stresses. Springer Reference, Dordrecht (2014). | |
dc.relation.referencesen | [3] Vlasyuka A. P., Zhukovskaya N. A. Mathematical Simulation of the Stressed-Strained State of the Foundation of Earth Dams with an Open Surface Under the Influence of Heat and Mass Transfer in the TwoDimensional Case. Journal of Engineering Physics and Thermophysics. 88 (2), 329–341 (2015). | |
dc.relation.referencesen | [4] Vlasyuk A. P., Zhukovska N. A., Zhukovskyy V. V., Klos-Witkowska A., Pazdriy I., Iatsykovska U. Mathematical modelling of three-dimensional problem of soil mass stressed-strained state considering mass and heat transfer: 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Vol. 1, 265–269 (2017). | |
dc.relation.referencesen | [5] Vlasyuk A. P., Borowik B., Zhukovska N. A., Zhukovskyy V. V., Karpinskyi V. Computer modelling of heat and mass transfer effect on the three-dimensional stressed-strained state of soil massif. 18th International Multidisciplinary Scientific Geoconference SGEM 2018. Vol. 18, No. 1.2, 153–160 (2018). | |
dc.relation.referencesen | [6] Vlasyuk A., Zhukovska N., Zhukovskyy V., Hesham R. Mathematical Modelling of Spatial Deformation Process of Soil Massif with Free Surface. Advances in intelligent systems and computing IV. Vol. 1080, 107–120(2020). | |
dc.relation.referencesen | [7] Kuzlo M. T. Investigation of the effect of the concentration of saline solutions on clutch forces in clay soils. Hydrotechnical construction. 5, 51–53 (2013). | |
dc.relation.referencesen | [8] Kuzlo M. T., Moshynskyi V. S., Martyniuk P. M. Mathematical modelling of soil Massif’s deformations under its drainage. International Journal of Apllied Mathematics. 31 (6), 751–762 (2019). | |
dc.relation.referencesen | [9] Remez N., Osipova T., Kraychuk O., Kraychuk S. Simulation of the solid waste landfill settlement taking into account underlying soil. Eastern-European Journal of Enterprise Technologies. 3 (10), 12–17 (2016). | |
dc.relation.referencesen | [10] Kaliukh I., Trofymchuk O., Lebid O. Numerical Solution of Two-Point Static Problems for Distributed Extended Systems by Means of the Nelder–Mead Method. Cybernetics and Systems Analysis. 55 (4),616–624 (2019). | |
dc.relation.referencesen | [11] Vodka O. Computation tool for assessing the probability characteristics of the stress state of the pipeline part defected by pitting corrosion. Advances in Engineering Software. 90, 159–168 (2015). | |
dc.relation.referencesen | [12] Dyyak I. I., Rubino B., Savula Y. H., Styahar A. O. Numerical analysis of heterogeneous mathematical model of elastic body with thin inclusion by combined BEM and FEM. Mathematical Modeling and Computing.6 (2), 239–250 (2019). | |
dc.relation.referencesen | [13] Dassios I., O’Keeffe G., Jivkov A. P. A mathematical model for elasticity using calculus on discrete manifolds. Mathematical Methods in the Applied Sciences. 41 (18), 9057–9070 (2018). | |
dc.relation.referencesen | [14] Safonyk A., Martynov S., Kunytskyi S., Pinchuk O. Mathematical modelling of regeneration the filtering media bed of granular filters. Advances in Modelling and Analysis. 73 (2), 72–78 (2018). | |
dc.relation.referencesen | [15] Karnaukhov V. G. On A. D. Kovalenko’s Research Works on the Thermomechanics of Coupled Fields in Materials and Structural Members and Its Further Development. International Applied Mechanics. 41(9), 967–975 (2005). | |
dc.relation.referencesen | [16] Samarskii A. A. The theory of difference schemes. Vol. 240 of Pure and applied mathematics. Marcel Dekker, New York (2001). | |
dc.relation.referencesen | [17] Vlasyuk A. P., Kuzlo M. T. Experimental investigations of some of the parameters of filtration of salt solutions in sandy soils. Melioration and Water Handling Facilities: Interdepartmental Thematic Scientific Collection. 43–46 (2000), (in Ukrainian). | |
dc.rights.holder | ©2020 Lviv Polytechnic National University CMM IAPMM NASU | |
dc.subject | математичне i комп’ютерне моделювання | |
dc.subject | грунтовий масив | |
dc.subject | деформацiйнi процеси | |
dc.subject | сили зв’язностi | |
dc.subject | mathematical and computer modeling | |
dc.subject | soil massif | |
dc.subject | spatial deformation processes | |
dc.subject | forces of cohesion | |
dc.subject.udc | 65N06 | |
dc.subject.udc | 35C99 | |
dc.subject.udc | 68N99 | |
dc.title | Mathematic and computer modeling of cohesion effect forces on spatial deformation processes of soil massif | |
dc.title.alternative | Математичне і комп’ютерне моделювання впливу сил зв’язності на просторові деформаційні процеси грунтових масивів | |
dc.type | Article |