Mathematical modelling to industrial repair and maintenance policy system for its reliability

dc.citation.epage473
dc.citation.issue3
dc.citation.spage465
dc.contributor.affiliationУніверситет Читкара
dc.contributor.affiliationСільськогосподарський університет
dc.contributor.affiliationChitkara University
dc.contributor.affiliationAgricultural University
dc.contributor.authorБхатті, Дж.
dc.contributor.authorБхардвадж, Н.
dc.contributor.authorКумар, С.
dc.contributor.authorBhatti, J.
dc.contributor.authorBhardwaj, N.
dc.contributor.authorKumar, S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-25T07:19:04Z
dc.date.available2023-10-25T07:19:04Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractЦя стаття є ініціативою, яка вироблена новою моделлю надійності для автомобільних галузей ремонту своєї продукції, розділивши політику ремонту на дві категорії: (a) регулярний/звичайний сервіс та (b) стратегія для випадкових або додаткових відмов. Поняття процесу перевірки було введено для належної перевірки несправності, а також для її стратегії ремонту за часом та витратами. Витрати на обслуговування регулярних послуг фіксовані, але у випадку додаткових збоїв додаткові витрати визначатимуться залежно від рівня збитків. Стохастичний аналіз для системи чисельно та графічно проаналізовано шляхом обчислення змінних надійності, таких як середній час до відмови системи, доступність, перевірка та технічне обслуговування системи з концепцією геометричного розподілу, марковського процесу та регенеративної техніки. Результати виявились корисними для досягнення мети розрахунку функції прибутку, яка зростає зі збільшенням ремонту та зменшенням рівня відмов.
dc.description.abstractThe present paper is an initiative taken by emerging reliability model to a automobile repair industries for its products by dividing repair policy into two categories as (a) regular/normal service and (b) strategy for accidental or additional failure. The concept of inspection process has been introduced for proper verification of failure and also to its repairing strategy with time and cost. The maintenance cost for regular services are fixed but for the case of additional failures the additional cost will be decided upon the level of damage. The stochastic analysis for system been numerically and graphically analyzed by calculating reliability variables like MTSF, availability, inspection and maintenance analysis of the system with the concept of geometric distribution, Markov process and regenerative technique. The results been proved beneficial for fulfilling the objective of calculating profit function that increases with increasing repair and decreasing failure rate.
dc.format.extent465-473
dc.format.pages9
dc.identifier.citationBhatti J. Mathematical modelling to industrial repair and maintenance policy system for its reliability / J. Bhatti, N. Bhardwaj, S. Kumar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 465–473.
dc.identifier.citationenBhatti J. Mathematical modelling to industrial repair and maintenance policy system for its reliability / J. Bhatti, N. Bhardwaj, S. Kumar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 465–473.
dc.identifier.doidoi.org/10.23939/mmc2021.03.465
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60400
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 3 (8), 2021
dc.relation.references[1] Singh D., Taneja G. Reliability and economic analysis of a power generating system comprising one gas and one steam turbine with random inspection. Journal of Mathematics and Statistics. 10 (4), 436–442 (2014).
dc.relation.references[2] Bhatti J., Chitkara A., Kakkar M. Stochastic analysis of parallel system with two discrete failures. Model Assisted Statistics and Applications. 9, 257–265 (2014).
dc.relation.references[3] Bhatti J., Chitkara A., Kakkar M. Stochastic analysis of dis-similar standby system with discrete failure, inspection and replacement policy. Demonstratio Mathematica. 49 (2), 224–235 (2016).
dc.relation.references[4] Hua D. G., Elsayed E. Reliability estimation of k-out-of-npairs: G balanced systems with spatially distributed units. IEEE Trans. Reliability. 65, 886–900 (2016).
dc.relation.references[5] Hua D. G., Elsayed E. Degradation analysis of k-out-of-n pairs: G balanced systems with spatially distributed units. IEEE Trans. Reliability. 65, 941–956 (2016).
dc.relation.references[6] Taj S. Z., Rizwan S. M., Alkali B. M., Harrison D. K., Taneja G. Probabilistic modeling and analysis of a cable plant subsystem with priority to repair over preventive maintenance. I-Managers Journal on Mathematics. 6 (3), 12–21 (2017).
dc.relation.references[7] Adlakha N., Taneja G., Shilpi. Reliability and cost-benefit analysis of a two-unit cold standby system used for communication through satellite with assembling and activation time. International Journal of Applied Engineering Research. 12 (20), 9697–9702 (2017).
dc.relation.references[8] Cui L. R., Gao H. D., Mo Y. C. Reliabilities for k-out-of-n: F balanced systems with m sectors. IISE Trans. 50 (5), 381–393 (2017).
dc.relation.references[9] Cui L. R., Chen J. H., Li X. C. Balanced reliability systems under Markov processes. IISE Trans. 51 (9), 1025–1035 (2018).
dc.relation.references[10] Endharta A. J., Yun W. Y., Ko Y. M. Reliability evaluation of circular k-out-of-n:G balanced systems through minimal path sets. Reliability Engineering and System Safety. 180, 220–236 (2018).
dc.relation.references[11] Chen W. L. System reliability analysis of retrial machine repair systems with warm standbys and a single server of working breakdown and recovery policy. System Engineering. 21, 59–69 (2018).
dc.relation.references[12] Saini M., Kumar A. Stochastic modeling of a single-unit system operating under different environmental conditions subject to inspection and degradation. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 21, 1–8 (2018).
dc.relation.references[13] Kumar A., Saini M. Analysis of some reliability measures of single-unit systems subject to abnormal environmental conditions and arbitrary distribution for failure and repair activities. Journal of Information and Optimization Sciences. 39 (2), 545–559 (2018).
dc.relation.references[14] Barak M. S., Yadav D., Barak S. K. Stochastic analysis of two unit redundant system with priority to inspection over repair. Life Cycle Reliability and Safety Engineering. 21, 1–9 (2018).
dc.relation.references[15] Bhardwaj S., Bhardwaj N., Kumar V., Parashar B. Estimation of lifespan of diesel locomotive engine. Journal of Information and Optimization Sciences. 40 (5), 1097–1108 (2019).
dc.relation.references[16] Dong Q. L., Cui L. R., Si S. B. Reliability and availability analysis of stochastic degradation systems based on bivariate wiener processes. Appl. Math. Model. 79, 414–433 (2019).
dc.relation.references[17] Wu H., Li Y. F., Bйrenguer C. Optimal inspection and maintenance for a repairable k-out-of-n:G warm standby system. Reliability Engineering and System Safety. 193, 1–11 (2019).
dc.relation.references[18] Jia H. P., Ding Y., Peng R., Liu H. L., Song Y. H. Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby. Reliability Engineering and System Safety. 195, 1–10 (2019).
dc.relation.references[19] Kakkar M. K., Bhatti J., Malhotra R., Kaur M., Goyal D. Availability analysis of an industrial system under the provision of replacement of a unit using genetic algorithm. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 9, 1236–1241 (2019).
dc.relation.references[20] Fang C., Cui L. Reliability analysis for balanced engine systems with m sectors by considering start-up probability. Reliability Engineering and System Safety. 197, 1–10 (2020).
dc.relation.references[21] Garg R., Dube M., Krishna H. Estimation of Parameters and Reliability Characteristics in Lindley Distribution Using Randomly Censored Data. Statistics, Optimization and Information Computing. 8 (1), 80–97 (2020).
dc.relation.references[22] Bhatti J., Kakkar M. K., Bhardwaj N., Kaur M., Goyal D. Reliability analysis to industrial active standby redundant system. Malaysian Journal of Science. 39 (3), 74–84 (2020).
dc.relation.references[23] Bhatti J., Kakkar M. K., Kaur M. Stochastic Analysis to an Power Supply System Through Reliability Modelling. Transactions Issue Mathematics, Azerbaijan National Academy of Sciences. 41 (1), 35–43 (2021).
dc.relation.references[24] Bhatti J., Kakkar M. K., Kaur M., Goyal D., Khanna P. Stochastic analysis to mechanical system to its reliability with varrying repairing services. Chebyshevskii Sbornik. 22 (1), 92–104 (2021).
dc.relation.references[25] Bhatti J., Kakkar M. K. Reliability analysis of cold standby parallel system possessing failure and repair rate under geometric distribution. Recent Advances in Computer Science and Communications. 14 (3), 968–974 (2021).
dc.relation.referencesen[1] Singh D., Taneja G. Reliability and economic analysis of a power generating system comprising one gas and one steam turbine with random inspection. Journal of Mathematics and Statistics. 10 (4), 436–442 (2014).
dc.relation.referencesen[2] Bhatti J., Chitkara A., Kakkar M. Stochastic analysis of parallel system with two discrete failures. Model Assisted Statistics and Applications. 9, 257–265 (2014).
dc.relation.referencesen[3] Bhatti J., Chitkara A., Kakkar M. Stochastic analysis of dis-similar standby system with discrete failure, inspection and replacement policy. Demonstratio Mathematica. 49 (2), 224–235 (2016).
dc.relation.referencesen[4] Hua D. G., Elsayed E. Reliability estimation of k-out-of-npairs: G balanced systems with spatially distributed units. IEEE Trans. Reliability. 65, 886–900 (2016).
dc.relation.referencesen[5] Hua D. G., Elsayed E. Degradation analysis of k-out-of-n pairs: G balanced systems with spatially distributed units. IEEE Trans. Reliability. 65, 941–956 (2016).
dc.relation.referencesen[6] Taj S. Z., Rizwan S. M., Alkali B. M., Harrison D. K., Taneja G. Probabilistic modeling and analysis of a cable plant subsystem with priority to repair over preventive maintenance. I-Managers Journal on Mathematics. 6 (3), 12–21 (2017).
dc.relation.referencesen[7] Adlakha N., Taneja G., Shilpi. Reliability and cost-benefit analysis of a two-unit cold standby system used for communication through satellite with assembling and activation time. International Journal of Applied Engineering Research. 12 (20), 9697–9702 (2017).
dc.relation.referencesen[8] Cui L. R., Gao H. D., Mo Y. C. Reliabilities for k-out-of-n: F balanced systems with m sectors. IISE Trans. 50 (5), 381–393 (2017).
dc.relation.referencesen[9] Cui L. R., Chen J. H., Li X. C. Balanced reliability systems under Markov processes. IISE Trans. 51 (9), 1025–1035 (2018).
dc.relation.referencesen[10] Endharta A. J., Yun W. Y., Ko Y. M. Reliability evaluation of circular k-out-of-n:G balanced systems through minimal path sets. Reliability Engineering and System Safety. 180, 220–236 (2018).
dc.relation.referencesen[11] Chen W. L. System reliability analysis of retrial machine repair systems with warm standbys and a single server of working breakdown and recovery policy. System Engineering. 21, 59–69 (2018).
dc.relation.referencesen[12] Saini M., Kumar A. Stochastic modeling of a single-unit system operating under different environmental conditions subject to inspection and degradation. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 21, 1–8 (2018).
dc.relation.referencesen[13] Kumar A., Saini M. Analysis of some reliability measures of single-unit systems subject to abnormal environmental conditions and arbitrary distribution for failure and repair activities. Journal of Information and Optimization Sciences. 39 (2), 545–559 (2018).
dc.relation.referencesen[14] Barak M. S., Yadav D., Barak S. K. Stochastic analysis of two unit redundant system with priority to inspection over repair. Life Cycle Reliability and Safety Engineering. 21, 1–9 (2018).
dc.relation.referencesen[15] Bhardwaj S., Bhardwaj N., Kumar V., Parashar B. Estimation of lifespan of diesel locomotive engine. Journal of Information and Optimization Sciences. 40 (5), 1097–1108 (2019).
dc.relation.referencesen[16] Dong Q. L., Cui L. R., Si S. B. Reliability and availability analysis of stochastic degradation systems based on bivariate wiener processes. Appl. Math. Model. 79, 414–433 (2019).
dc.relation.referencesen[17] Wu H., Li Y. F., Birenguer C. Optimal inspection and maintenance for a repairable k-out-of-n:G warm standby system. Reliability Engineering and System Safety. 193, 1–11 (2019).
dc.relation.referencesen[18] Jia H. P., Ding Y., Peng R., Liu H. L., Song Y. H. Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby. Reliability Engineering and System Safety. 195, 1–10 (2019).
dc.relation.referencesen[19] Kakkar M. K., Bhatti J., Malhotra R., Kaur M., Goyal D. Availability analysis of an industrial system under the provision of replacement of a unit using genetic algorithm. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 9, 1236–1241 (2019).
dc.relation.referencesen[20] Fang C., Cui L. Reliability analysis for balanced engine systems with m sectors by considering start-up probability. Reliability Engineering and System Safety. 197, 1–10 (2020).
dc.relation.referencesen[21] Garg R., Dube M., Krishna H. Estimation of Parameters and Reliability Characteristics in Lindley Distribution Using Randomly Censored Data. Statistics, Optimization and Information Computing. 8 (1), 80–97 (2020).
dc.relation.referencesen[22] Bhatti J., Kakkar M. K., Bhardwaj N., Kaur M., Goyal D. Reliability analysis to industrial active standby redundant system. Malaysian Journal of Science. 39 (3), 74–84 (2020).
dc.relation.referencesen[23] Bhatti J., Kakkar M. K., Kaur M. Stochastic Analysis to an Power Supply System Through Reliability Modelling. Transactions Issue Mathematics, Azerbaijan National Academy of Sciences. 41 (1), 35–43 (2021).
dc.relation.referencesen[24] Bhatti J., Kakkar M. K., Kaur M., Goyal D., Khanna P. Stochastic analysis to mechanical system to its reliability with varrying repairing services. Chebyshevskii Sbornik. 22 (1), 92–104 (2021).
dc.relation.referencesen[25] Bhatti J., Kakkar M. K. Reliability analysis of cold standby parallel system possessing failure and repair rate under geometric distribution. Recent Advances in Computer Science and Communications. 14 (3), 968–974 (2021).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectстохастичні процеси
dc.subjectпроцеси відновлення Маркова
dc.subjectнадійність
dc.subjectдоступність
dc.subjectперіод технічного обслуговування та перевірки
dc.subjectstochastic processes
dc.subjectMarkov renewal processes
dc.subjectreliability
dc.subjectavailability
dc.subjectmaintenance and inspection period
dc.titleMathematical modelling to industrial repair and maintenance policy system for its reliability
dc.title.alternativeМатематичне моделювання системи політики промислового ремонту та технічного обслуговування для її надійності
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n3_Bhatti_J-Mathematical_modelling_to_465-473.pdf
Size:
977.32 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n3_Bhatti_J-Mathematical_modelling_to_465-473__COVER.png
Size:
453.48 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: