Methodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows

dc.citation.epage93
dc.citation.issue2
dc.citation.spage89
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorФединець, Василь
dc.contributor.authorFedynets, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-18T11:53:09Z
dc.date.available2020-02-18T11:53:09Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractТемпература газових потоків є важливим параметром технологічного процесу, визначає кількісні і якісні показники вихідного продукту, наявність браку, стан технологічного обладнання, а також безпеку функціонування процесу. Тому вимірювання її необхідно проводити неперервно, з високою точністю, невеликою інерційністю і високою надійністю, оскільки інформативний сигнал про значення температури використовується в інформаційно-вимірювальних системах та автоматичних системах контролю та регулювання. При вимірюванні змінної в часі температури газового потоку термоперетворювач (ТП) не встигає стежити за зміною температури, оскільки для зміни температури його чутливого елемента потрібен деякий час. Спотворення показів ТП через нестаціонарності теплових процесів і в самому ТП, і між ним і навколишнім середовищем обумовлені його інерційними властивостями (термічною реакцією). Завдяки цим властивостям виникає додаткова різниця між температурою чутливого елемента і температурою газового потоку, яка визначає динамічну похибку вимірювання температури потоку. В статті запропоновано методику визначення інерційних властивостей ТП для різних швидкостей газового потоку за виміряним значенням при одній базовій швидкості потоку.
dc.description.abstractGas flow temperature is an important parameter of the process, determines the quantitative and qualitative indicators of the original product, the presence of defects, the state of technological equipment, as well as the safety of the process. Therefore, its measurement must be carried out continuously, with high accuracy, low inertia and high reliability, since the information signal about the value of temperature is used in information-measuring systems and automatic control and regulation systems. When measuring a time-varying gas flow temperature, the thermo transducer does not have time to keep track of the temperature change since it takes some time to change the temperature of its sensitive element. Distortion of thermo transducer due to the non-stationarity of thermal processes both in the thermo transducer itself and between it and the environment is due to its inertial properties (thermal reaction). Due to these properties, there is an additional difference between the temperature of the sensing element and the temperature of the gas flow, which determines the dynamic error in measuring the flow temperature. The method of determination of inertial properties of thermo transducer for different gas flow velocities by the measured value at one basic flow velocity is proposed in the article.
dc.format.extent89-93
dc.format.pages5
dc.identifier.citationFedynets V. Methodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows / Vasyl Fedynets // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 2. — P. 89–93.
dc.identifier.citationenFedynets V. Methodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows / Vasyl Fedynets // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 2. — P. 89–93.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45666
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (5), 2019
dc.relation.references1. Lutsyk, Ya. T., Huk, O. P., Lakh, O. I., & Stadnyk, B. I. (2006). Temperature measurement: theory and practice. Lviv: Beskyd Bit, 560 p. (in Ukrainian)
dc.relation.references2. GOST 6651: 2014. (2015) Metrology. Platinum, copper and nickel resistance thermal converters. General specifications and test methods (GOST 6651-2009, IDT). – K .: Ministry of Economic Development of Ukraine, 2015. 26 p. (in Ukrainian)
dc.relation.references3. V. Fedynets, L. Lesovoi, B.Chaban. (2017) Research and analysis of Rapidly Changing Gas Flow Temperatures Measurement Methods. Energy Eng. Control Syst., Vol. 3, No. 1, p. 29–36. (in Ukrainian)
dc.relation.references4. Yaryshev, N. A (1990) Theoretical bases of measurement of non-stationary temperatures . “Energoatomizdat“ Publ. in Moscow, 254 p. (in Russian)
dc.relation.references5. Moffat, R. J. (1962) Gas Temperature Measurement; Temperatures, Its Measurement and Control in Science and Industry / Editor-in-Chief Charles M. Herzfeld, Reinhold Publishing Corporation in NY, 3 (2), p. 553–571.
dc.relation.references6. Kondratiev, G. M (1957) Thermal measurements. “Mashgiz” Publ. in Moscow, 244 p. (in Russian)
dc.relation.references7. Petunin, A. N (1974) Measurement of gas flow parameters. “Mechanical Engineering” Publ. in Moscow, 260 p. (in Russian)
dc.relation.references8. Fedynets, V. O, Lesovoy, L. V. (2014) Influence of heat transfer conditions on the inertia of thermo-converters for measuring the temperature of gas flows , Metrology and devices No. 2 (46), p. 9–12. (in Ukrainian)
dc.relation.references9. Fedynets, V. O. (2013) Investigation of the stability of the metrological characteristics of the sensing elements of thermoconverters for measuring the temperature of gas flows, Lviv Polytechnic National University, Environmental, Engineering, Automation, No. 758, p. 152–155. (in Ukrainian)
dc.relation.references10. IEC 60751 (2008) International standard. Industrial platinum resistance thermometers and platinum temperature sensors. IEC, 22 p
dc.relation.referencesen1. Lutsyk, Ya. T., Huk, O. P., Lakh, O. I., & Stadnyk, B. I. (2006). Temperature measurement: theory and practice. Lviv: Beskyd Bit, 560 p. (in Ukrainian)
dc.relation.referencesen2. GOST 6651: 2014. (2015) Metrology. Platinum, copper and nickel resistance thermal converters. General specifications and test methods (GOST 6651-2009, IDT), K ., Ministry of Economic Development of Ukraine, 2015. 26 p. (in Ukrainian)
dc.relation.referencesen3. V. Fedynets, L. Lesovoi, B.Chaban. (2017) Research and analysis of Rapidly Changing Gas Flow Temperatures Measurement Methods. Energy Eng. Control Syst., Vol. 3, No. 1, p. 29–36. (in Ukrainian)
dc.relation.referencesen4. Yaryshev, N. A (1990) Theoretical bases of measurement of non-stationary temperatures . "Energoatomizdat" Publ. in Moscow, 254 p. (in Russian)
dc.relation.referencesen5. Moffat, R. J. (1962) Gas Temperature Measurement; Temperatures, Its Measurement and Control in Science and Industry, Editor-in-Chief Charles M. Herzfeld, Reinhold Publishing Corporation in NY, 3 (2), p. 553–571.
dc.relation.referencesen6. Kondratiev, G. M (1957) Thermal measurements. "Mashgiz" Publ. in Moscow, 244 p. (in Russian)
dc.relation.referencesen7. Petunin, A. N (1974) Measurement of gas flow parameters. "Mechanical Engineering" Publ. in Moscow, 260 p. (in Russian)
dc.relation.referencesen8. Fedynets, V. O, Lesovoy, L. V. (2014) Influence of heat transfer conditions on the inertia of thermo-converters for measuring the temperature of gas flows , Metrology and devices No. 2 (46), p. 9–12. (in Ukrainian)
dc.relation.referencesen9. Fedynets, V. O. (2013) Investigation of the stability of the metrological characteristics of the sensing elements of thermoconverters for measuring the temperature of gas flows, Lviv Polytechnic National University, Environmental, Engineering, Automation, No. 758, p. 152–155. (in Ukrainian)
dc.relation.referencesen10. IEC 60751 (2008) International standard. Industrial platinum resistance thermometers and platinum temperature sensors. IEC, 22 p
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.subjectметодика
dc.subjectгазовий потік
dc.subjectвимірювання
dc.subjectтемпература
dc.subjectчас термічної реакції
dc.subjectmethodology
dc.subjectgas flow
dc.subjectmeasurements
dc.subjecttemperature
dc.subjecttime of thermal reaction
dc.titleMethodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows
dc.title.alternativeМетодика визначення часу термічної реакції термоперетворювачів для вимірювання температури газових потоків
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v5n2_Fedynets_V-Methodology_for_Determining_89-93.pdf
Size:
246.8 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v5n2_Fedynets_V-Methodology_for_Determining_89-93__COVER.png
Size:
419.47 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.97 KB
Format:
Plain Text
Description: