Vortex depth analysis in an unbaffled stirred tank with concave blade impeller
dc.citation.epage | 307 | |
dc.citation.issue | 3 | |
dc.citation.spage | 301 | |
dc.citation.volume | 11 | |
dc.contributor.affiliation | Department of Civil Engineering, NIT Manipur | |
dc.contributor.affiliation | Department of Civil Engineering, IIT Guwahati | |
dc.contributor.author | Devi, Thiyam | |
dc.contributor.author | Kumar, Bimlesh | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2018-06-21T09:53:17Z | |
dc.date.available | 2018-06-21T09:53:17Z | |
dc.date.created | 2017-01-20 | |
dc.date.issued | 2017-01-20 | |
dc.description.abstract | Проведені дослідження в неекранованому резервуарі з перемішуванням, обладнаним імпелером з увігну- тими лопатями. Вивчено вплив діаметра робочого колеса (d), діаметру резервуара (D) і глибини зазору робочого колеса (C) на глибину вихорів за різних швидкостей обертання імпелера. Ви- значено, що глибина вихору є більшою, коли робоче колесо зна- ходиться ближче до дна резервуара. Відносна глибина вихору збільшується зі збільшенням діаметра робочого колеса при всіх значеннях глибини зазору робочого колеса при постійному D. Встановлено, що при постійному d і різній глибині зазору робочого колеса чим менший діаметр резервуара, тим більша відносна глибина вихору. Критична швидкість зменшується зі збільшенням C/D і d/D. Розроблено масштабований критерій відносної глибини вихору, дійсний для геометрично подібних умов. | |
dc.description.abstract | The present study was carried out by experimenting in a stirred tank of unbaffled system employed with concave blade impeller. In this study the influence of impeller diameter (d), tank diameter (D) and impeller clearance depth (C) on vortex depth is investigated at various impeller rotational speeds. The higher vortex depth is observed when the impeller is closer to the tank bottom. Relative vortex depth increases with the increase in the impeller diameter in all cases of impeller clearance depth at constant D. Smaller tank diameter gives higher relative vortex depth, when d is constant at different impeller clearance depths. Critical speed is found decreasing with the increase in C/D and d/D ratio. Finally, a scale up criteria for relative vortex depth has been developed, which is valid for geometrically similar conditions. | |
dc.format.extent | 301-307 | |
dc.format.pages | 7 | |
dc.identifier.citation | Devi T. Vortex depth analysis in an unbaffled stirred tank with concave blade impeller / Thiyam Devi, Bimlesh Kumar // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 11. — No 3. — P. 301–307. | |
dc.identifier.citationen | Devi T. Vortex depth analysis in an unbaffled stirred tank with concave blade impeller / Thiyam Devi, Bimlesh Kumar // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 11. — No 3. — P. 301–307. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/42099 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (11), 2017 | |
dc.relation.references | [1] Nagata S.: Mixing: Principles and Applications. Wiley, New York 1975. | |
dc.relation.references | [2] Glover G., Fitzpatrick J.: Chem. Eng. J., 2013, 127, 11. https://doi.org/10.1016/j.cej.2006.09.019 | |
dc.relation.references | [3] Assirelli M., Bujalski W., Eaglesham A., Nienow A.: Chem. Eng. Sci., 2014, 63, 35. https://doi.org/10.1016/j.ces.2007.07.074 | |
dc.relation.references | [4] Kumar B.: Chem. React. Eng. Catalysis, 2009, 4, 55. | |
dc.relation.references | [5]Markopoulos J., Kontogeorgaki E.: Chem. Eng. Techn., 1995, 18, 68. https://doi.org/10.1002/ceat.270180113 | |
dc.relation.references | [6] Pacek A., Ding P., Nienow A.: Chem. Eng. Sci., 2001, 56, 3247. https://doi.org/10.1016/S0009-2509(01)00015-X | |
dc.relation.references | [7] Hekmat D., Hebel D., Schmid H., Weuster-Botz D.: Process Biochem., 2007, 42, 1649. https://doi.org/10.1016/j.procbio.2007.10.001 | |
dc.relation.references | [8] Aloi L., Cherry R.: Chem. Eng. Sci., 1996, 51, 1523. https://doi.org/10.1016/0009-2509(95)00307-X | |
dc.relation.references | [9] Rousseau J., Muhr H., Plasari E.: Can. J. Chem. Eng., 2001, 79, 697. https://doi.org/10.1002/cjce.5450790501 | |
dc.relation.references | [10] Pinelli D., Nocentini M., Magelli F.: Chem. Eng. Commun., 2001, 188, 91. https://doi.org/10.1080/00986440108912898 | |
dc.relation.references | [11] Abatan A., McCarthy J., Vargas W.: AIChE J., 2006, 52, 2039. https://doi.org/10.1002/aic.10834 | |
dc.relation.references | [12]Montante G., Paglianti A.,Magelli F.: 12th Eur. Conf. onMixing, Bologna, AIDIC, Milan 2006 137. | |
dc.relation.references | [13] RaoA., Kumar B.: J. Chem. Technol. Biotechnol., 2007, 82, 101. https://doi.org/10.1002/jctb.1643 | |
dc.relation.references | [14] Tezura S., Kimura A., Yoshida M et al.: J. Chem. Technol. Biotechnol., 2007, 82, 672. https://doi.org/10.1002/jctb.1726 | |
dc.relation.references | [15] Galletti C., Brunazzi E.: Chem. Eng. Sci., 2008, 63, 4494. https://doi.org/10.1016/j.ces.2008.06.007 | |
dc.relation.references | [16] Shan X., Yu G., Yang C.,Mao Z.: Chinese J. Process. Eng., 2008, 8, 1. | |
dc.relation.references | [17] Yoshida M., Kimura A., Yamagiwa K. et al.: J. Fluid. Sci. Technol., 2008, 3, 282. https://doi.org/10.1299/jfst.3.282 | |
dc.relation.references | [18] Hirata Y., Dote T., Inoue Y.: Chem. Eng. Res. Des., 2009, 87, 430. https://doi.org/10.1016/j.cherd.2008.12.022 | |
dc.relation.references | [19] Brucato A., Cipollina A.,Micale G. et al.: Chem. Eng. Sci., 2010, 65, 3001. https://doi.org/10.1016/j.ces.2010.01.026 | |
dc.relation.references | [20] Tamburini A., Cipollina A.,Micale G. et al.: Chem. Eng. J., 2012, 193-194, 234. https://doi.org/10.1016/j.cej.2012.04.044 | |
dc.relation.references | [21] Tamburini A., Cipollina A., Micale G., Brucato A.: Chem. Eng. Transact., 2011, 24, 1441. https://doi.org/10.3303/CET1124241 | |
dc.relation.references | [22] Wang B., Lan C., Horsman M.: Biotech. Adv., 2012, 30, 904. https://doi.org/10.1016/j.biotechadv.2012.01.019 | |
dc.relation.references | [23] Grisafi F., Brucato A., Rizzuti L.: IChemE Symp. Ser., 1994, 136, 571. | |
dc.relation.references | [24] Rao A., Kumar B.: J. Hydraul. Eng. ASCE, 2009, 135, 38. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:1(38) | |
dc.relation.references | [25] Rieger F., Ditl P., Noval V.: Chem. Eng. Sci., 1979, 34, 397. https://doi.org/10.1016/0009-2509(79)85073-3 | |
dc.relation.references | [26] Tsao G.: Biotechnol. Bioeng., 1968, 10, 177. https://doi.org/10.1002/bit.260100206 | |
dc.relation.referencesen | [1] Nagata S., Mixing: Principles and Applications. Wiley, New York 1975. | |
dc.relation.referencesen | [2] Glover G., Fitzpatrick J., Chem. Eng. J., 2013, 127, 11. https://doi.org/10.1016/j.cej.2006.09.019 | |
dc.relation.referencesen | [3] Assirelli M., Bujalski W., Eaglesham A., Nienow A., Chem. Eng. Sci., 2014, 63, 35. https://doi.org/10.1016/j.ces.2007.07.074 | |
dc.relation.referencesen | [4] Kumar B., Chem. React. Eng. Catalysis, 2009, 4, 55. | |
dc.relation.referencesen | [5]Markopoulos J., Kontogeorgaki E., Chem. Eng. Techn., 1995, 18, 68. https://doi.org/10.1002/ceat.270180113 | |
dc.relation.referencesen | [6] Pacek A., Ding P., Nienow A., Chem. Eng. Sci., 2001, 56, 3247. https://doi.org/10.1016/S0009-2509(01)00015-X | |
dc.relation.referencesen | [7] Hekmat D., Hebel D., Schmid H., Weuster-Botz D., Process Biochem., 2007, 42, 1649. https://doi.org/10.1016/j.procbio.2007.10.001 | |
dc.relation.referencesen | [8] Aloi L., Cherry R., Chem. Eng. Sci., 1996, 51, 1523. https://doi.org/10.1016/0009-2509(95)00307-X | |
dc.relation.referencesen | [9] Rousseau J., Muhr H., Plasari E., Can. J. Chem. Eng., 2001, 79, 697. https://doi.org/10.1002/cjce.5450790501 | |
dc.relation.referencesen | [10] Pinelli D., Nocentini M., Magelli F., Chem. Eng. Commun., 2001, 188, 91. https://doi.org/10.1080/00986440108912898 | |
dc.relation.referencesen | [11] Abatan A., McCarthy J., Vargas W., AIChE J., 2006, 52, 2039. https://doi.org/10.1002/aic.10834 | |
dc.relation.referencesen | [12]Montante G., Paglianti A.,Magelli F., 12th Eur. Conf. onMixing, Bologna, AIDIC, Milan 2006 137. | |
dc.relation.referencesen | [13] RaoA., Kumar B., J. Chem. Technol. Biotechnol., 2007, 82, 101. https://doi.org/10.1002/jctb.1643 | |
dc.relation.referencesen | [14] Tezura S., Kimura A., Yoshida M et al., J. Chem. Technol. Biotechnol., 2007, 82, 672. https://doi.org/10.1002/jctb.1726 | |
dc.relation.referencesen | [15] Galletti C., Brunazzi E., Chem. Eng. Sci., 2008, 63, 4494. https://doi.org/10.1016/j.ces.2008.06.007 | |
dc.relation.referencesen | [16] Shan X., Yu G., Yang C.,Mao Z., Chinese J. Process. Eng., 2008, 8, 1. | |
dc.relation.referencesen | [17] Yoshida M., Kimura A., Yamagiwa K. et al., J. Fluid. Sci. Technol., 2008, 3, 282. https://doi.org/10.1299/jfst.3.282 | |
dc.relation.referencesen | [18] Hirata Y., Dote T., Inoue Y., Chem. Eng. Res. Des., 2009, 87, 430. https://doi.org/10.1016/j.cherd.2008.12.022 | |
dc.relation.referencesen | [19] Brucato A., Cipollina A.,Micale G. et al., Chem. Eng. Sci., 2010, 65, 3001. https://doi.org/10.1016/j.ces.2010.01.026 | |
dc.relation.referencesen | [20] Tamburini A., Cipollina A.,Micale G. et al., Chem. Eng. J., 2012, 193-194, 234. https://doi.org/10.1016/j.cej.2012.04.044 | |
dc.relation.referencesen | [21] Tamburini A., Cipollina A., Micale G., Brucato A., Chem. Eng. Transact., 2011, 24, 1441. https://doi.org/10.3303/CET1124241 | |
dc.relation.referencesen | [22] Wang B., Lan C., Horsman M., Biotech. Adv., 2012, 30, 904. https://doi.org/10.1016/j.biotechadv.2012.01.019 | |
dc.relation.referencesen | [23] Grisafi F., Brucato A., Rizzuti L., IChemE Symp. Ser., 1994, 136, 571. | |
dc.relation.referencesen | [24] Rao A., Kumar B., J. Hydraul. Eng. ASCE, 2009, 135, 38. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:1(38) | |
dc.relation.referencesen | [25] Rieger F., Ditl P., Noval V., Chem. Eng. Sci., 1979, 34, 397. https://doi.org/10.1016/0009-2509(79)85073-3 | |
dc.relation.referencesen | [26] Tsao G., Biotechnol. Bioeng., 1968, 10, 177. https://doi.org/10.1002/bit.260100206 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2006.09.019 | |
dc.relation.uri | https://doi.org/10.1016/j.ces.2007.07.074 | |
dc.relation.uri | https://doi.org/10.1002/ceat.270180113 | |
dc.relation.uri | https://doi.org/10.1016/S0009-2509(01)00015-X | |
dc.relation.uri | https://doi.org/10.1016/j.procbio.2007.10.001 | |
dc.relation.uri | https://doi.org/10.1016/0009-2509(95)00307-X | |
dc.relation.uri | https://doi.org/10.1002/cjce.5450790501 | |
dc.relation.uri | https://doi.org/10.1080/00986440108912898 | |
dc.relation.uri | https://doi.org/10.1002/aic.10834 | |
dc.relation.uri | https://doi.org/10.1002/jctb.1643 | |
dc.relation.uri | https://doi.org/10.1002/jctb.1726 | |
dc.relation.uri | https://doi.org/10.1016/j.ces.2008.06.007 | |
dc.relation.uri | https://doi.org/10.1299/jfst.3.282 | |
dc.relation.uri | https://doi.org/10.1016/j.cherd.2008.12.022 | |
dc.relation.uri | https://doi.org/10.1016/j.ces.2010.01.026 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2012.04.044 | |
dc.relation.uri | https://doi.org/10.3303/CET1124241 | |
dc.relation.uri | https://doi.org/10.1016/j.biotechadv.2012.01.019 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)0733-9429(2009)135:1(38 | |
dc.relation.uri | https://doi.org/10.1016/0009-2509(79)85073-3 | |
dc.relation.uri | https://doi.org/10.1002/bit.260100206 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2017 | |
dc.rights.holder | © Devi T., Kumar B., 2017 | |
dc.subject | увігнута лопать | |
dc.subject | обчислювальна гідродинаміка | |
dc.subject | резервуар з мішалкою | |
dc.subject | глибина вихору | |
dc.subject | concave blade | |
dc.subject | computational fluid dynamics | |
dc.subject | stirred tank | |
dc.subject | vortex depth | |
dc.title | Vortex depth analysis in an unbaffled stirred tank with concave blade impeller | |
dc.title.alternative | Аналіз глибини вихору в неекранованому резервуарі з перемішуванням і лопатевим імпелером | |
dc.type | Article |
Files
License bundle
1 - 1 of 1