Вимірювальна техніка та метрологія

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/2123

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Вплив випромінювальних характеристик металевих сплавів на методичні похибки двокольорової компенсаційної та класичної термометрії
    (Видавництво Львівської політехніки, 2019-02-28) Жуков, Л. Ф.; Петренко, Д. О.; Zhukov, Leonid; Petrenko, Dmytro; Фізико-технологічний інститут металів і сплавів НАН України; Physical and Technological Institute of Metals and Alloys of NAS of Ukraine
    Досліджено методичні похибки двокольорової компенсаційної та класичної енергетичної й спектрального відношення пірометрії випромінювання під впливом змінних випромінювальних характеристик металевих сплавів. Випромінювальні характеристики кількісно оцінено за допомогою середнього рівня випромінювальної здатності та коефіцієнта селективності. Середніми (настроювальними) значеннями цих параметрів вибрано такі, що відповідають вольфраму в вакуумі за температури 1600 К (за довжин хвиль 0,7 та 0,9 мкм), а діапазони їх змін – відповідно до умов в металургійних печах та в агрегатах. Відповідно до настроювальних значень випромінювальних характеристик введено поправки в математичні моделі класичної, а також двокольорової компенсаційної пірометрії випромінювання і розраховано методичні похибки. На основі аналізу математичних моделей методів пірометрії випромінювання встановлено закономірності впливу середнього рівня випромінювальної здатності та коефіцієнта селективності на методичні похибки. На відміну від класичної пірометрії випромінювання, методичні похибки двокольорової компенсаційної термометрії практично не залежать від коефіцієнта селективності. Це є перевагою двокольорової компенсаційної термометрії та дає змогу мінімізувати похибки безконтактних вимірювань температури металевих сплавів, вкритих прозорими та напівпрозорими оксидними плівками, які спричиняють істотні зміни коефіцієнта селективності. Визначено відхилення середнього рівня випромінювальної здатності від настроювального, за яких модулі методичних похибок двокольорової компенсаційної термометрії не перевищують 1,0 % та 0,5 %. Вони становлять ±0,042 та ±0,020, відповідно. У металургії найпоширеніший комплексний вплив випромінювальних характеристик на методичні похибки оптичної термометрії. Тому, залежно від співвідношення випромінювальних характеристик, змінюватиметься співвідношення похибок досліджених методів. Визначено функціональну залежність коефіцієнта селективності від середнього рівня випромінювальної здатності, за якої похибки всіх розглянутих методів рівні. Під комплексним впливом середнього рівня випромінювальної здатності та селективності її спектрального розподілу похибки двокольорової компенсаційної пірометрії випромінювання менші від похибок класичної інфрачервоної енергетичної пірометрії випромінювання, а також термометрії спектрального відношення відповідно в 1,04–1,26 та 1,21–1,57 разу.
  • Thumbnail Image
    Item
    Методична похибка пеленгування цілі системою звукової артилерійської розвідки
    (Видавництво Львівської політехніки, 2019-02-28) Кочан, Р. В.; Трембач, Б. Р.; Кочан, О. В.; Kochan, Roman; Trembach, Bohdan; Kochan, Orest; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Проаналізовано методику використання звукометричних комплексів, які прийняли на озброєння Збройні сили України. З використанням геометричної моделі акустичної бази показано природу виникнення методичної похибки вимірювання кута напряму (пеленгу) на ціль за допомогою звукометричних станцій та виведено математичну залежність, що її описує. Під час аналізу залежності методичної похибки пеленгування цілі від її координат та просторової орієнтації акустичної бази виявлено граничні мінімальні значення відношення координати цілі до довжини акустичної бази, за яких забезпечується домінування інструментальної похибки звукометричних станцій над методичною похибкою. Отримані результати дають змогу здійснити оцінку методичної похибки пеленгування цілей під час звукової артилерійської розвідки.
  • Thumbnail Image
    Item
    Development of liquid-in-tube microthermometers
    (Видавництво Львівської політехніки, 2018-02-26) Мельник, Х. Л.; Яцишин, С. П.; Melnyk, Kh.; Yatsyshyn, S.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Існує низка проблем, які повинна вирішити мікро- й нанотермометрія, щоб забезпечити подальший прогрес та промислове освоєння виробництва й застосування мікрооб’єктів. Найпершою з них вважається визначення підстав застосування до цих об’єктів поняття “температура” подібно до того, як воно застосовується до макрооб’єктів. Наступною проблемою є оцінювання змін температури контрольованого об’єкта внаслідок акту термометрування, причому незалежно від застосування контактних чи безконтактних методів. У роботі проведено дослідження на основі оптимізації основного рівняння стану термодинаміки в мікро- та нанообластях. Внаслідок його розв’язання встановлено термодинамічні фактори, що визначають метрологічну характеристику рідинних мікро- і нанотермометрів, а також встановлено чинники впливу. З’ясовано, як і наскільки змінюються термометричні характеристики рідинних термометрів у міру зменшення їхніх лінійних розмірів із переходом у мікро- і надалі у нанообласть. Показано, що термометрична характеристика кардинально змінюється зі зменшенням лінійних розмірів, оскільки переважною термодинамічною силою, що визначає чутливість до температури, стає сила поверхневого натягу. Разом з тим, важливим є фактор співрозмірності контрольованого об’єкта та термометра, проектованого й застосовуваного для вимірювань. Цей фактор визначає методичну похибку вимірювання температури розглянутим термометром. Остання стає доволі значною за умови термометрування об’єкта, співмірного за об’ємно- теплофізичними властивостями з термометром. Для мікро- і нанотехнологій питання створення нанотермометрів набуває визначального значення, позаяк мінімізація методичної похибки до рівня, нижчого від 1 %, означає, що розміри разом з теплоємністю та питомою вагою термометра повинні бути на порядок меншими за відповідні параметри контрольованого об’єкта.
  • Thumbnail Image
    Item
    Дослідження впливуметодичної та інструментальної складових похибки на точність реконструкції температурного поля на поверхні стінки
    (Видавництво Львівської політехніки, 2016) Дорожовець, Михайло; Бурдега, Мар’яна; Національний університет “Львівська політехніка”
    Досліджено основні характеристики методичної та інструментальної складових похибки відтворення температурного поля на поверхні прямокутного об’єкта томографічним методом за результатами вимірювання опорів лінійних резистивних перетворювачів. Аналіз проведено для двох схем розміщення перетворювачів та різної їх кількості (k = 6; 8; 12) вздовж однієї координати. Також досліджено різні моделі розподілу температурного поля та порядки апроксимуючого двовимірного алгебраїчного багаточлена (p = 2; 3). Отримані результати показали, що методична похибка найбільше залежить від моделі апроксимації температурного поля і порядку алгебраїчного багаточлена, яким відтворюють поле. На похибку відтворення температури найнегативніше впливають адитивні випадкові впливи у результатах вимірювань, їх вплив підсилюється у 5–10 разів. Вплив інструментальної адитивної систематичної складової майже вдвічі менший від впливу випадкової і дуже мало залежить від кількості перетворювачів та порядку відтворювального багаточлена; мультиплікативні складові у результатах вимірювань приблизно вдвічі підсилюються алгоритмом відтворення. Исследованы основные характеристики методической и инструментальной составляющих погрешности воспроизведения температурного поля на поверхности прямоугольного объекта томографическим методом по результатам измерения сопротивлений линейных резистивных преобразователей. Анализ проводился для двух различных схем размещения преобразователей и разного их количества (k = 6; 8; 12) вдоль одного направления. Также исследовались различные модели распределения температурного поля и порядка аппроксимирующего двухмерного алгебраического многочлена (p = 2; 3). Полученные результаты показали, что методическая погрешность больше всего зависит от модели аппроксимации температурного поля и порядка алгебраического многочлена, которым воспроизводят поле. На погрешность воспроизведения температуры наиболее негативно влияют аддитивные случайные влияния в результатах измерений, их влияние усиливается у 5–10 раз. Влияние инструментальной аддитивной систематической погрешности практически в два раза меньше от влияния случайной и очень мало зависит от количества преобразователей и порядка воспроизведения алгебраического многочлена; мультипликативные составляющие в результатах измерений вдвое усиливаются алгоритм воспроизведения. In the paper the reconstruction of temperature distribution based on resistance measurements of linear sensing elements using tomography method are considered. The methodical and instrumental errors of temperature distribution are investigated and analyzed. In particular the first component depends on number of sensors and degree of used approximation of temperature distribution and the second component depends on the level of random and systematic additive and multiplicative components in measurements. Two schemes of placing of the linear temperature resistivity sensors on the investigation object are researched in the paper (Fig. 1). Also, three approximation models of the temperature distribution in the form of two-dimensional cosine, asymmetrical cosine and Gaussian with initial temperature Θ0 = 100 ºС and different maximal change temperature Θm = 25; 10 and 5 ºС are investigated. The spatial resistivity distribution can be approximated by known two-dimensional basic functions are presented by formula (3). The resistances of linear resistive temperature sensors depend on resistivity are represented by formula (5). Coefficients' vector of the basic functions was calculated using the method of least squares with regularization (formula (22)). Then approximated spatial temperature distribution can be calculated on the basis of approximation model of the spatial distribution of resistivity (formula (14)). In the article proposed method is investigated for sensitive elements with the following parameters: resistivity ρ0 = 0.01724 μΩ m, temperature coefficient of resistance α = 4.3∙10-3 1/ºС, diameter of sensitive element d = 0.2 mm is simulated. The temperature distribution on the wall size of 2×2 m×m is investigated. The normalized to the maximum temperature error of reconstructed temperature distribution and root mean square error are calculated (formula (15), (16)). By using Monte-Carlo method (number of simulations M = 104) was performed simulation and in each simulation the surface average value, its standard deviations, minimum and maximum errors were determined by formulas (18) and (19). The characteristics of methodical error of reconstruction of temperature distribution for connection points on the side k = 6; 8; 12, algebraic polynomial of order p = 2 and different schemes (Fig. 1(a) and (b)) are presented in Fig. 2 and 3 respectively. The characteristics of methodical error of reconstruction of temperature distribution for scheme (Fig. 1(b)), approximation model 1(b), connection points on the side k = 6; 8; 12 and algebraic polynomial of order p = 2; 3 is presented in Fig. 4. The characteristics of instrumental error of reconstruction of temperature distribution for scheme (Fig. 1(b)), approximation model 3 (a) and (b), connection points on the side k = 8 and algebraic polynomial of order p = 2 are presented in Fig. 5. The results of this investigation showed that methodical component the most depends on approximation model and order of algebraic polynomial. The influence of additive systematic component of approximation is twice smaller than the influence of random. The influence of multiplicative systematic component of approximation is close to the influence of additive systematic component. The influence of additive random is amplified in 5–10 times.