Вісники та науково-технічні збірники, журнали
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12
Browse
30 results
Search Results
Item Проектування системи автоматизованого генерування віршованих творів(Видавництво Львівської політехніки, 2021-02-28) Дяк, Т. П.; Грицюк, Юрій Іванович; Diak, T. P.; Hrytsiuk, Yu. I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityРозглянуто особливості проектування системи автоматизованого генерування віршованих творів, що відкриває нові можливості художнього мовлення та сфери шоу-бізнесу, насамперед підготовки віршів і пісень. Доволі часто тексти пісень без особливого змісту стають успішними через відсутність складних сюжетів, а також через ненав'язливість і легкість їхнього сприйняття слухачами. Проаналізовано відомі літературні джерела та наявні програмні продукти, які можуть генерувати віршовані твори, поєднуючи різні методи та алгоритми. Встановлено, що жоден з них не здатен забезпечити змістовність і унікальність віршованого твору водночас, тим більше українською мовою. Проаналізовано наявні підходи до генерування віршованих творів, серед яких актуальними є метод на підставі шаблонів, генерування та тестування, еволюційні алгоритми та метод на підставі конкретних випадків. Досліджено особливості генерування віршованих творів, насамперед правила римування, види строф, віршовані ритми та розміри. Розроблено підхід до автоматизованого генерування віршованих творів з використанням еволюційних алгоритмів і методу на підставі конкретних випадків. Їхнє поєднання нагадує послідовність дій для творчих особистостей під час створення віршів або написання текстів пісень. Розглянуто особливості організації нейронної мережі для автоматизованого генерування віршованих творів. Запропоновано навчання нейронної мережі виконати за методом зворотного поширення та з використанням генетичного алгоритму. Проаналізовано принцип роботи алгоритмів пошуку оптимальних рішень, які містять такі послідовні етапи як ініціалізацію, оцінювання рішень, відбір популяцій, еволюцію рішень. Детально досліджено їхню взаємодію та різні можливості для навчання нейронної мережі. Розроблено алгоритм, за яким програмний додаток буде аналізувати запропоновані користувачем віршовані твори та генерувати нові його варіанти на підставі отриманих від нейронної мережі логічно зв'язаних слів чи рядків куплета вірша. Користувач може вносити правки як до складових вірша, так і до згенерованих віршованих творів, і в такий спосіб може навчати нейронну мережу. Розроблено специфікацію вимог до програмного додатку, визначено основні вимоги до користувацького інтерфейсу, а також встановлено потенційні класи користувачів, які будуть його використовувати.Item Construction of a velocity model of shear wave for complexly structured geological medium using neural network (by example of data of the South Saspian basin)(Видавництво Львівської політехніки, 2020-02-25) Агаєв, Х. Б.; Кулієв, Р. Г.; Якубова, Ш. З.; Aghayev, Kh. B.; Kuliyev, R. H.; Yaqubova, Sh. Z.; Інститут геології та геофізики АНА; Institute of Geology and Geophysics of ANASМета. Розроблення методу прогнозування дво(три)вимірної швидкісної моделі середовища поперечної хвилі. Досліджено складноструктурне геологічне середовище на основі геофізичних і геологічних даних із застосуванням штучної нейронної мережі. Метод передбачає побудову та використання моделей середовища за даними геофізичних досліджень свердловин, сейсморозвідки та інших наземних геофізичних методів. На відміну від існуючих методів, у пропонованому використовують також додаткові дані про середовище: про термодинамічний стан середовища, стратиграфічну приуроченість відкладень, літологію порід, розподіл кластерів даних, фізичні властивості середовища тощо. Згідно з методом, спочатку будують одновимірні моделі за різними властивостями середовища на основі даних комплексу геофізичних досліджень свердловин. Потім за сукупністю моделей нейронну мережу вивчають для прогнозування швидкості поперечної хвилі, відтак будують дво(три)вимірні моделі середовища за результатами наземних геофізичних досліджень. З використанням сукупності цих моделей прогнозують дво(три)вимірну швидкісну модель поперечної хвилі. Результати. Із застосуванням методу спрогнозовано швидкісну модель поперечної хвилі для складноструктурного геологічного середовища Південно-Каспійського басейну. Наукова новизна. Збільшенням кількості типів використаних даних забезпечується підвищення точності прогнозування моделі середовища. Практична цінність. Підвищення ефективності сейсморозвідки під час визначення нафтогазонасиченості, пружного геодинамічного стану та інших фізичних властивостей геологічного середовища.Item Розроблення мобільних засобів нейроподібного криптографічного шифрування та дешифрування даних у реальному часі(Видавництво Львівської політехніки, 2021-03-01) Цмоць, Іван; Рабик, Василь; Лукащук, Юрій; Tsmots, Ivan; Rabyk, Vasyl; Lukashchuk, Yurii; Національний університет “Львівська політехніка”; Львівський національний університет імені Івана Франка; Lviv Polytechnic National University; Lviv National University of Ivan FrankoСформовано вимоги, вибрано метод і розглянуто основні етапи розроблення мобільних засобів нейроподібного криптографічного шифрування та дешифрування даних у реальному часі. Показано, що розроблення мобільних засобів нейроподібного криптографічного шифрування та дешифрування даних у реальному часі з високою ефективністю використання обладнання зводиться до мінімізації апаратних затрат із забезпеченням множини вимог, характеристик і обмежень. Вдосконалено таблично-алгоритмічний метод обчислення скалярного добутку завдяки можливості роботи з операндами з плаваючою комою та орієнтовано його на апаратно-програмну реалізацію. Розроблено на базі універсального процесорного ядра, доповненого спеціалізованими модулями, мобільні засоби нейроподібного криптографічного шифрування та дешифрування даних, які за рахунок взаємопоєднання універсального та спеціалізованого підходів, програмних і апаратних засобів забезпечують ефективну реалізацію алгоритмів криптографічного шифрування та дешифрування даних у реальному часі. Запропоновано для досягнення високих технікоекономічних показників під час реалізації спеціалізованих модулів нейроподібного криптографічного шифрування та дешифрування даних у реальному часі використовувати багатооперандний підхід, таблиці макрочасткових добутків і базис елементарних арифметичних операцій. Реалізовано з використанням мови програмування апаратури VHDL та середовища розроблення Quartus II вер. 13.1 на FPGA спеціалізовані модулі нейроподібного криптографічного шифрування та дешифрування даних. Здійснено оцінювання апаратних і часових параметрів розробленого спеціалізованого модуля нейроподібного криптографічного дешифрування даних.Item Побудова оптимізованої багатошарової нейронної мережі в межах нелінійної моделі узагальненої похибки(Видавництво Львівської політехніки, 2021-03-01) Пелещак, Роман; Литвин, Василь; Пелещак, Іван; Висоцька, Вікторія; Черняк, Оксана; Peleshchak, Roman; Lytvyn, Vasyl; Peleshchak, Ivan; Vysotska, Victoria; Chernyak, Oksana; Національний університет “Львівська політехніка”; Дрогобицький державний педагогічний університет імені Івана Франка; Lviv Polytechnic National University; Drohobych Ivan Franko State Pedagogical UniversityУ роботі запропоновано спосіб оптимізації структури багатошарової нейронної мережі на основі мінімізації нелінійної узагальненої похибки, яка ґрунтується на принципі мінімальної довжини опису. Відповідно до цього принципу, узагальнена похибка мережі під час роботи з новими даними визначається похибкою апроксимації даних нейронною мережею у нелінійному наближенні та похибкою опису моделі. З умови мінімуму узагальненої похибки мережі виведено вирази для обчислення оптимального розміру мережі (кількість синаптичних зв’язків та кількість нейронів у прихованих шарах). Побудовано графічні залежності узагальненої похибки мережі від кількості синаптичних зв’язків між нейронами за різних значень вхідних образів і фіксованої кількості навчальних прикладів та графічні залежності оптимальної кількості синаптичних зв’язків від кількості навчальних прикладів за різних значень вхідних образів. На основі співвідношень для оптимальної кількості синаптичних зв’язків між нейронами та оптимальної кількості нейронів у прихованих шарах оцінено ступінь складності навчання нейронної мережі.Item Модель паралельної сортувальної нейронної мережі дискретного часу(Видавництво Львівської політехніки, 2020-11-20) Тимощук, П.; Tymoshchuk, P.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityПредставлено модель паралельної сортувальної нейронної мережі дискретного часу. Модель описується системою різницевих і вихідних рівнянь. Мережа відзначається високою швидкодією, довільною скінченною роздільною здатністю вхідних даних і придатна для обробки невідомих вхідних даних зі скінченними значеннями, розміщених у довільному відомому скінченному діапазоні. Мережа характеризується незначною обчислювальною складністю і складністю схемотехнічної реалізації. Наведено результати комп’ютерного моделювання, які ілюструють ефективність мережі.Item Розроблення системи розпізнавання людських облич для відеоспостереження(Видавництво Львівської політехніки, 2020-12-30) Курта, І. В.; Лагун, А. Е.; Національний університет “Львівська політехніка”Досліджено принципи побудови систем спостереження та розпізнавання об’єктів. Наведено класифікацію способів розпізнавання людських облич. Проаналізовано роботу мережі прогресивного калібрування (ПКМ) для розпізнавання людських облич. Розроблено алгоритм розпізнавання облич, створено програмну систему розпізнавання облич і проведено її тестування.Item Використання нейронної мережі для розроблення системи уникнення перешкод на дорозі(Видавництво Львівської політехніки, 2020-12-30) Дзелендзяк, У. Ю.; Вигриновський, М. А.; Національний університет “Львівська політехніка”Досліджено можливості використання нейронної мережі для реалізації системи уникнення перешкод на дорозі. Розглянуто алгоритми, на основі яких може працювати така система, та принципи навчання нейронної мережі. Для дослідження розроблено симулятор на базі Unity та ML Agents. За допомогою симулятора досліджено ефективність навчання та роботи цієї нейронної мережі за різних конфігурацій.Item Спрощена модель нейронної мережі дискретного часу для паралельного сортування(Видавництво Львівської політехніки, 2020-03-01) Тимощук, П. В.; Tymoshchuk, P.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityЗапропоновано модель паралельної сортувальної нейронної мережі дискретного часу. Модель описується системою різницевих рівнянь і ступінчастими функціями. Модель базується на спрощеній нейронній схемі дискретного часу, призначеній для ідентифікації максимальних/minimal за значеннями вхідних даних, яка описується різницевим рівнянням і ступінчастими функціями. Визначається обмеження згори на кількість ітерацій, необхідних для досягнення пошуковим процесом збіжності до встановленого стану. Модель не потребує знання діапазону зміни вхідних даних. Для використання моделі має бути відомою мінімальна різниця між значеннями вхідних даних. Мережа придатна для обробки невідомих вхідних даних зі скінченними значеннями, розміщеними у довільному невідомому скінченному діапазоні. Мережа характеризується незначними обчислювальною складністю і складністю програмної реалізації, довільною скінченною роздільною здатністю вхідних даних, швидкодією. Наведено результати комп’ютерного моделювання, які ілюструють ефективність мережі.Item Розробка штучної нейронної мережі з осциляторними нейронами для розпізнавання спектральних образів(Видавництво Львівської політехніки, 2020-02-24) Пелещак, Роман; Литвин, Василь; Пелещак, Іван; Висоцька, Вікторія; Peleshchak, Roman; Lytvyn, Vasyl; Peleshchak, Ivan; Vysotska, Victoria; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityРозроблено новий тип штучної нейронної мережі з осциляторними нейронами, які мають власні частоти. За допомогою такої штучної нейронної мережі на основі інформаційного резонансу реалізовано новий метод розпізнавання мультиспектральних образів (мультиспектральних електромагнітних сигналів), що випромінюють динамічні об’єкти. Побудована нейронна мережа розпізнаватиме вхідні спектральні образи з амплітудою нестаціонарного сигналу, співвимірною з амплітудою сигналу шуму, завдяки резонансному ефекту в нелінійних осциляторних нейронах. Проведено комп’ютерний експеримент із розпізнавання мультиспектральних образів динамічною нейронною мережею на основі резонансного ефекту.Item Схемотехнічна реалізація моделі розпаралеленої штучної нейронної мережі нечіткої теорії адаптивного резонансу(Видавництво Львівської політехніки, 2019-02-28) Тимощук, П.; Шатний, С.; Tymoshchuk, P.; Shatnyi, S.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityУ статті описана і змодельована схемотехнічна реалізація розпаралеленої штучної нейронної мережі нечіткої теорії адаптивного резонансу. У мережі реалізовані паралельний вибір категорії та резонансу. Нейронні схеми типу “winner-take-all” неперервного та дискретного часу забезпечують ідентифікацію найбільших з М-входів. Схеми неперервного часу описані рівняннями стану з розривною правою частиною. Дискретний аналог описано різницевим рівнянням. Відповідні функціональні блок-діаграми схем містять М жорсткообмежувальних нейронів прямого зв’язку та один нейрон зворотного зв’язку, який використовують для обчислення динамічного зсуву входів. Схеми поєднують у собі такі переваги, як довільна скінченна роздільна здатність входів, висока швидкість збіжності операції “winner-take-all”, низька обчислювальна складність і складність апаратної реалізації та незалежність від початкових умов. Схеми також використовують для знаходження елементів вхідного вектора з мінімальними/максимальними значеннями для його нормування у діапазоні [0,1].
- «
- 1 (current)
- 2
- 3
- »