Прогнозування ймовірності роботи та відмови за заданої умови готовності симетричних ієрархічних систем, галужених до 4-го рівня, за допомогою штучних нейронних мереж
Loading...
Files
Date
2014
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Abstract
Запропоновано програмний модуль для розрахунку ймовірності роботи та відмови за заданої умови готовності ізотропних симетричних ієрархічних розгалужених систем (ІРС) з галуженням до n-го рівня, елементи якої підпорядковуються експоненційному закону. Здійснено прогнозування цих характеристик надійності за допомогою неітераційної штучної нейронної мережі (ШНМ). Розраховано середньоквадратичну приведену до діапазону значень похибку навчання і прогнозу, а також оцінено час навчання та прогнозуванняШНМ. The software module is developed. By the specified readiness parameters it calculates probabilities of the proper operation and failure-ability for the isotropic symmetric and hierarchical branched systems (HBS).The module is tested/restricted against the systems of the n-level branching whose elements obey the exponential rules. The non-iterative artificial neural network (ANN) has been deployed to the prediction of those characteristics. The reduced to the mean value range errors of the ANN learning and forecasting are calculated as
well as the time estimations for the ANN learning and forecasting.
Description
Keywords
ієрархічна розгалужена система, штучна нейронна мережа, прогнозування, неітераційне навчанняШНМ, ШНМ з “вузьким горлом”, hierarchical branched system, artificial neural network forecasting, noniterational training ANN, ANN with “bottles neck”
Citation
Павлюк О. Прогнозування ймовірності роботи та відмови за заданої умови готовності симетричних ієрархічних систем, галужених до 4-го рівня, за допомогою штучних нейронних мереж / О. Павлюк // Вісник Національного університету "Львівська політехніка". – 2014. – № 800 : Комп’ютерні науки та інформаційні технології. – С. 72–77. – Бібліографія: 7 назв.