Numerical exploration of mixed convection heat transfer features within a copper-water nanofluidic medium occupied a square geometrical cavity

Abstract

В представленій роботі явище змішаної конвекційно-теплової передачі в однорідних сумішах ретельно досліджується для випадку мідно-водяної нанорідини, що протікає усередині квадратної порожнини. Застосовуючи наближення Обербека–Буссінеска та використовуючи однофазну нанорідку модель, диференціальні рівняння зі частинними похідними, що моделюють реальний потік, сформульовані математично на основі теорії Нав’є–Стокса та теплового балансу, де важливі особливості досліджуваного середовища вважаються постійними при низьких температурах. Зазначимо, що величина густини в об’ємній силі плавучості тіла є лінійною функцією, залежною від температури. Характерні величини реалістично обчислюються за допомогою загальновживаних феноменологічних законів та більш точних експериментальних кореляцій. Для виведення безрозмірних рівнянь збереження застосовано процедуру знерозмірення. Отримані нелінійні диференціальні рівняння розв’язано чисельно для реалістичних граничних умов за допомогою компактного скінченно-різницевого методу четвертого порядку (КСРМЧП). Після проведення значних перевірок з опублікованими раніше результатами, з’ясовано, що динамічні та теплові характеристики, отримані для досліджуваного конвективного потоку нанорідини добре узгоджуються для різних значень задіяних фізичних параметрів. Крім того, представлені чисельні результати обговорені графічно та таблично за допомогою потокових ліній, ізотерм, полів швидкості, розподілу температури та локальних профілів теплопередачі.
The phenomenon of mixed convection heat transfer in a homogeneous mixture is deliberated thoroughly in this study for cooper-water nanofluids flowing inside a lid-driven square cavity. By adopting the Oberbeck–Boussinesq approximation and using the singlephase nanofluid model, the governing partial differential equations modeling the present flow are stated mathematically based on the Navier–Stokes and thermal balance formulations, where the important features of the scrutinized medium are presumed to remain constant at the cold temperature. Note here that the density quantity in the buoyancy body force is a linear temperature-dependent function. The characteristic quantities are computed realistically via the commonly used phenomenological laws and the more accurate experimental correlations. A feasible non-dimensionalization procedure has been employed to derive the dimensionless conservation equations. The resulting nonlinear differential equations are solved numerically for realistic boundary conditions by employing the fourth-order compact finite-difference method (FOCFDM). After performing extensive validations with the previously published findings, the dynamical and thermal features of the studied convective nanofluid flow are revealed to be in good agreement for sundry values of the involved physical parameters. Besides, the present numerical outcomes are discussed graphically and tabularly with the help of streamlines, isotherms, velocity fields, temperature distributions, and local heat transfer rate profiles.

Description

Keywords

нанорідина, змішана конвекція, квадратна порожнина, чисельне моделювання, nanofluid, mixed convection, square cavity, numerical simulation

Citation

Numerical exploration of mixed convection heat transfer features within a copper-water nanofluidic medium occupied a square geometrical cavity / M. Zaydan, A. Wakif, E. Essaghir, R. Sehaqui // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 807–820.