Spatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient

dc.citation.epage118
dc.citation.issue2
dc.citation.spage108
dc.contributor.affiliationРівненський державний гуманітарний університет
dc.contributor.affiliationНаціональний університет водного господарства та природокористування
dc.contributor.affiliationНаціональний технічний університет України “Київський політехнічний інститут імені Ігоря Сікорського”
dc.contributor.affiliationRivne State Humanitarian University
dc.contributor.affiliationNational University of Water and Environmental Engineering
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.authorБомба, А.
dc.contributor.authorСафоник, А.
dc.contributor.authorВолощук, В.
dc.contributor.authorBomba, A.
dc.contributor.authorSafonyk, A.
dc.contributor.authorVoloshchuk, V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-27T08:51:46Z
dc.date.available2020-02-27T08:51:46Z
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.description.abstractЗапропоновано просторове узагальнення математичної моделі очищення рідини від багатокомпонентного забруднення, яка, за припущення про домінування конвективних складових цього процесу над дифузійними, враховує зворотний вплив визначальних факторів (концентрації забруднення рідини та осаду) на характеристики середовища (коефіцієнт пористості, дифузії), і містить спеціально задану додаткову умову (умову перевизначення) для знаходження невідомого малого масообмінного коефіцієнта. Побудовано алгоритм розв’язування відповідної нелінійної оберненої сингулярно збуреної задачі типу “конвекція–дифузія–масообмін”. На цій основі проведено комп’ютерний експеримент.
dc.description.abstractA generalized spatial mathematical model of the multicomponent pollutant removal for a liquid treatment is proposed. Under the assumption of domination of convective processes over diffusive ones, the model considers an inverse influence of the determining factor (pollution concentration in water and sludge) on the media characteristics (porosity, diffusion) and takes into account the specified additional condition (overridden condition) for estimation of the unknown mass transfer coefficient of a small value. The algorithm for solving the corresponding nonlinear singularly perturbed inverse problem of the type “convection–diffusion–mass transfer” is developed. A computer experiment has been carried out based on this methodology.
dc.format.extent108-118
dc.format.pages11
dc.identifier.citationBomba A. Spatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient / A. Bomba, A. Safonyk, V. Voloshchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 108–118.
dc.identifier.citationenBomba A. Spatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient / A. Bomba, A. Safonyk, V. Voloshchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 108–118.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46133
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (5), 2018
dc.relation.references1. Berg C. Permeability description by characteristic length, tortuosity, constriction and porosity. Transport in Porous Media. 103 (3), 381–409 (2014).
dc.relation.references2. Calo V., Iliev O., Lakdawala Z., Leonard K., Printsypar G. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: The influence of membrane microstructure. International journal of advances in engineering sciences and applied mathematics. 7 (1), 2–13 (2015).
dc.relation.references3. Chetti A., Benamar A., Abdelkrim H. Modeling of Particle Migration in Porous Media: Application to Soil Suffusion. Transport in Porous Media. 113 (3), 591–606 (2016).
dc.relation.references4. Civa F. Modified formulations of particle deposition and removal kinetics in saturated porous media. Transport in Porous Media. 111 (2), 381–410 (2016).
dc.relation.references5. Gravelle A., Peysson Y., Tabary R., Egermann P. Experimental investigation and modelling of colloidal release in porous media. Transport in Porous Media. 88 (3), 441–459 (2011).
dc.relation.references6. Husseinab M., Lesnica D., Ivanchov M., Snitkod H. Multiple time-dependent coefficient identification thermal problems with a free boundary. Appl. Num. Math. 99, 24–50 (2016).
dc.relation.references7. Mittal R., Jain R. Numerical solutions of nonlinear Fisher’s reaction-diffusion equation with modified cubic B-spline collocation method. Math. Sci. 7 (1), 12 (2013).
dc.relation.references8. Peng Ch., Xu G., WuW., Yu H., Wangc Ch. Multiphase SPH modeling of free surface flow in porous media with variable porosity. Computers and Geotechnics. 81, 239–248 (2017).
dc.relation.references9. Shi M., Printsypar G., Iliev O., Calo V., Amy G., Nunes S. Water flow prediction based on 3D membrane morphology simulation. J. Membr. Sci. 487, 19–31 (2015).
dc.relation.references10. Orlov V., Martynov S., Kunitskiy S. Energy saving in water treatment technologies with polystyrene foam filters. Journal of Water and Land Development. 31 (X-XII), 119–122 (2016).
dc.relation.references11. Orlov V., Martynov S., Kunitskiy S. Water defferrization in polystyrene foam filters with sediment layer. LAP LAMBERT Academic Publishing, Saarbrucken. 94 p. (2016).
dc.relation.references12. Bomba A., Safonyk A., Fursachik E. Identification of mass transfer distribution factor and its account for magnetic filtration process modeling. Journal of Automation and Information Sciences. 45 (4), 16–22 (2013).
dc.relation.references13. Orlov V., Safonyk A., Martynov S. Simulation the process of iron removal the underground water by polystyrene foam filters. International Journal of Pure and Applied Mathematics. 109 (4), 881–888 (2016).
dc.relation.references14. Safonyk A. Modelling the filtration processes of liquids from multicomponent contamination in the conditions of authentication of mass transfer coefficient. Int. J. Math. Models and Methods in Appl. Sciences. 9, 189–192 (2015).
dc.relation.references15. Safonyk A. Modelling of biological purification process taking into account the temperature mode. Int. J. Math. Models and Methods in Appl. Sciences. 12, 68 (2018).
dc.relation.references16. Bomba A., Klymiuk Yu., Prysiazhniuk I., Prysiazhniuk O., Safonyk A. Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles. AIP Conference Proceedings. 1773 (1), 040003 (2016).
dc.relation.references17. Bomba A., Safonik A. Mathematical simulation of the process of aerobic treatment of wastewater under conditions of diffusion and mass transfer perturbations. Journal of Engineering Physics and Thermophysics. 91 (2), 318–323 (2018).
dc.relation.references18. Safonyk A., Martynov S., Kunytsky S., Pinchuk O. Mathematical modelling of regeneration the filtering media bed of granular filters. Advances in Modelling and Analysis C. 73 (2). 72–78 (2018).
dc.relation.referencesen1. Berg C. Permeability description by characteristic length, tortuosity, constriction and porosity. Transport in Porous Media. 103 (3), 381–409 (2014).
dc.relation.referencesen2. Calo V., Iliev O., Lakdawala Z., Leonard K., Printsypar G. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: The influence of membrane microstructure. International journal of advances in engineering sciences and applied mathematics. 7 (1), 2–13 (2015).
dc.relation.referencesen3. Chetti A., Benamar A., Abdelkrim H. Modeling of Particle Migration in Porous Media: Application to Soil Suffusion. Transport in Porous Media. 113 (3), 591–606 (2016).
dc.relation.referencesen4. Civa F. Modified formulations of particle deposition and removal kinetics in saturated porous media. Transport in Porous Media. 111 (2), 381–410 (2016).
dc.relation.referencesen5. Gravelle A., Peysson Y., Tabary R., Egermann P. Experimental investigation and modelling of colloidal release in porous media. Transport in Porous Media. 88 (3), 441–459 (2011).
dc.relation.referencesen6. Husseinab M., Lesnica D., Ivanchov M., Snitkod H. Multiple time-dependent coefficient identification thermal problems with a free boundary. Appl. Num. Math. 99, 24–50 (2016).
dc.relation.referencesen7. Mittal R., Jain R. Numerical solutions of nonlinear Fisher’s reaction-diffusion equation with modified cubic B-spline collocation method. Math. Sci. 7 (1), 12 (2013).
dc.relation.referencesen8. Peng Ch., Xu G., WuW., Yu H., Wangc Ch. Multiphase SPH modeling of free surface flow in porous media with variable porosity. Computers and Geotechnics. 81, 239–248 (2017).
dc.relation.referencesen9. Shi M., Printsypar G., Iliev O., Calo V., Amy G., Nunes S. Water flow prediction based on 3D membrane morphology simulation. J. Membr. Sci. 487, 19–31 (2015).
dc.relation.referencesen10. Orlov V., Martynov S., Kunitskiy S. Energy saving in water treatment technologies with polystyrene foam filters. Journal of Water and Land Development. 31 (X-XII), 119–122 (2016).
dc.relation.referencesen11. Orlov V., Martynov S., Kunitskiy S. Water defferrization in polystyrene foam filters with sediment layer. LAP LAMBERT Academic Publishing, Saarbrucken. 94 p. (2016).
dc.relation.referencesen12. Bomba A., Safonyk A., Fursachik E. Identification of mass transfer distribution factor and its account for magnetic filtration process modeling. Journal of Automation and Information Sciences. 45 (4), 16–22 (2013).
dc.relation.referencesen13. Orlov V., Safonyk A., Martynov S. Simulation the process of iron removal the underground water by polystyrene foam filters. International Journal of Pure and Applied Mathematics. 109 (4), 881–888 (2016).
dc.relation.referencesen14. Safonyk A. Modelling the filtration processes of liquids from multicomponent contamination in the conditions of authentication of mass transfer coefficient. Int. J. Math. Models and Methods in Appl. Sciences. 9, 189–192 (2015).
dc.relation.referencesen15. Safonyk A. Modelling of biological purification process taking into account the temperature mode. Int. J. Math. Models and Methods in Appl. Sciences. 12, 68 (2018).
dc.relation.referencesen16. Bomba A., Klymiuk Yu., Prysiazhniuk I., Prysiazhniuk O., Safonyk A. Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles. AIP Conference Proceedings. 1773 (1), 040003 (2016).
dc.relation.referencesen17. Bomba A., Safonik A. Mathematical simulation of the process of aerobic treatment of wastewater under conditions of diffusion and mass transfer perturbations. Journal of Engineering Physics and Thermophysics. 91 (2), 318–323 (2018).
dc.relation.referencesen18. Safonyk A., Martynov S., Kunytsky S., Pinchuk O. Mathematical modelling of regeneration the filtering media bed of granular filters. Advances in Modelling and Analysis P. 73 (2). 72–78 (2018).
dc.rights.holderCMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University
dc.subjectбагатокомпонентне забруднення
dc.subjectобернена задача
dc.subjectумова перевизначення
dc.subjectасимптотичний розв’язок
dc.subjectідентифікація
dc.subjectпросторова модель
dc.subjectmulticomponent pollutant
dc.subjectinverse problem
dc.subjectoverdeterminatiom condition
dc.subjectasymptotic solution
dc.subjectidentification
dc.subjectspatial modeling
dc.subject.udc: 519.63:532.5
dc.subject.udc519.63
dc.subject.udc532.5
dc.titleSpatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient
dc.title.alternativeПросторове моделювання процесу очищення рідини від багатокомпонентного забруднення за умов ідентифікації масообмінного коефіцієнта
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018v5n2_Bomba_A-Spatial_modeling_of_multicomponent_108-118.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018v5n2_Bomba_A-Spatial_modeling_of_multicomponent_108-118__COVER.png
Size:
441.5 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.01 KB
Format:
Plain Text
Description: