Spatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient
dc.citation.epage | 118 | |
dc.citation.issue | 2 | |
dc.citation.spage | 108 | |
dc.contributor.affiliation | Рівненський державний гуманітарний університет | |
dc.contributor.affiliation | Національний університет водного господарства та природокористування | |
dc.contributor.affiliation | Національний технічний університет України “Київський політехнічний інститут імені Ігоря Сікорського” | |
dc.contributor.affiliation | Rivne State Humanitarian University | |
dc.contributor.affiliation | National University of Water and Environmental Engineering | |
dc.contributor.affiliation | National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” | |
dc.contributor.author | Бомба, А. | |
dc.contributor.author | Сафоник, А. | |
dc.contributor.author | Волощук, В. | |
dc.contributor.author | Bomba, A. | |
dc.contributor.author | Safonyk, A. | |
dc.contributor.author | Voloshchuk, V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-27T08:51:46Z | |
dc.date.available | 2020-02-27T08:51:46Z | |
dc.date.created | 2018-02-26 | |
dc.date.issued | 2018-02-26 | |
dc.description.abstract | Запропоновано просторове узагальнення математичної моделі очищення рідини від багатокомпонентного забруднення, яка, за припущення про домінування конвективних складових цього процесу над дифузійними, враховує зворотний вплив визначальних факторів (концентрації забруднення рідини та осаду) на характеристики середовища (коефіцієнт пористості, дифузії), і містить спеціально задану додаткову умову (умову перевизначення) для знаходження невідомого малого масообмінного коефіцієнта. Побудовано алгоритм розв’язування відповідної нелінійної оберненої сингулярно збуреної задачі типу “конвекція–дифузія–масообмін”. На цій основі проведено комп’ютерний експеримент. | |
dc.description.abstract | A generalized spatial mathematical model of the multicomponent pollutant removal for a liquid treatment is proposed. Under the assumption of domination of convective processes over diffusive ones, the model considers an inverse influence of the determining factor (pollution concentration in water and sludge) on the media characteristics (porosity, diffusion) and takes into account the specified additional condition (overridden condition) for estimation of the unknown mass transfer coefficient of a small value. The algorithm for solving the corresponding nonlinear singularly perturbed inverse problem of the type “convection–diffusion–mass transfer” is developed. A computer experiment has been carried out based on this methodology. | |
dc.format.extent | 108-118 | |
dc.format.pages | 11 | |
dc.identifier.citation | Bomba A. Spatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient / A. Bomba, A. Safonyk, V. Voloshchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 108–118. | |
dc.identifier.citationen | Bomba A. Spatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient / A. Bomba, A. Safonyk, V. Voloshchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 108–118. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46133 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (5), 2018 | |
dc.relation.references | 1. Berg C. Permeability description by characteristic length, tortuosity, constriction and porosity. Transport in Porous Media. 103 (3), 381–409 (2014). | |
dc.relation.references | 2. Calo V., Iliev O., Lakdawala Z., Leonard K., Printsypar G. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: The influence of membrane microstructure. International journal of advances in engineering sciences and applied mathematics. 7 (1), 2–13 (2015). | |
dc.relation.references | 3. Chetti A., Benamar A., Abdelkrim H. Modeling of Particle Migration in Porous Media: Application to Soil Suffusion. Transport in Porous Media. 113 (3), 591–606 (2016). | |
dc.relation.references | 4. Civa F. Modified formulations of particle deposition and removal kinetics in saturated porous media. Transport in Porous Media. 111 (2), 381–410 (2016). | |
dc.relation.references | 5. Gravelle A., Peysson Y., Tabary R., Egermann P. Experimental investigation and modelling of colloidal release in porous media. Transport in Porous Media. 88 (3), 441–459 (2011). | |
dc.relation.references | 6. Husseinab M., Lesnica D., Ivanchov M., Snitkod H. Multiple time-dependent coefficient identification thermal problems with a free boundary. Appl. Num. Math. 99, 24–50 (2016). | |
dc.relation.references | 7. Mittal R., Jain R. Numerical solutions of nonlinear Fisher’s reaction-diffusion equation with modified cubic B-spline collocation method. Math. Sci. 7 (1), 12 (2013). | |
dc.relation.references | 8. Peng Ch., Xu G., WuW., Yu H., Wangc Ch. Multiphase SPH modeling of free surface flow in porous media with variable porosity. Computers and Geotechnics. 81, 239–248 (2017). | |
dc.relation.references | 9. Shi M., Printsypar G., Iliev O., Calo V., Amy G., Nunes S. Water flow prediction based on 3D membrane morphology simulation. J. Membr. Sci. 487, 19–31 (2015). | |
dc.relation.references | 10. Orlov V., Martynov S., Kunitskiy S. Energy saving in water treatment technologies with polystyrene foam filters. Journal of Water and Land Development. 31 (X-XII), 119–122 (2016). | |
dc.relation.references | 11. Orlov V., Martynov S., Kunitskiy S. Water defferrization in polystyrene foam filters with sediment layer. LAP LAMBERT Academic Publishing, Saarbrucken. 94 p. (2016). | |
dc.relation.references | 12. Bomba A., Safonyk A., Fursachik E. Identification of mass transfer distribution factor and its account for magnetic filtration process modeling. Journal of Automation and Information Sciences. 45 (4), 16–22 (2013). | |
dc.relation.references | 13. Orlov V., Safonyk A., Martynov S. Simulation the process of iron removal the underground water by polystyrene foam filters. International Journal of Pure and Applied Mathematics. 109 (4), 881–888 (2016). | |
dc.relation.references | 14. Safonyk A. Modelling the filtration processes of liquids from multicomponent contamination in the conditions of authentication of mass transfer coefficient. Int. J. Math. Models and Methods in Appl. Sciences. 9, 189–192 (2015). | |
dc.relation.references | 15. Safonyk A. Modelling of biological purification process taking into account the temperature mode. Int. J. Math. Models and Methods in Appl. Sciences. 12, 68 (2018). | |
dc.relation.references | 16. Bomba A., Klymiuk Yu., Prysiazhniuk I., Prysiazhniuk O., Safonyk A. Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles. AIP Conference Proceedings. 1773 (1), 040003 (2016). | |
dc.relation.references | 17. Bomba A., Safonik A. Mathematical simulation of the process of aerobic treatment of wastewater under conditions of diffusion and mass transfer perturbations. Journal of Engineering Physics and Thermophysics. 91 (2), 318–323 (2018). | |
dc.relation.references | 18. Safonyk A., Martynov S., Kunytsky S., Pinchuk O. Mathematical modelling of regeneration the filtering media bed of granular filters. Advances in Modelling and Analysis C. 73 (2). 72–78 (2018). | |
dc.relation.referencesen | 1. Berg C. Permeability description by characteristic length, tortuosity, constriction and porosity. Transport in Porous Media. 103 (3), 381–409 (2014). | |
dc.relation.referencesen | 2. Calo V., Iliev O., Lakdawala Z., Leonard K., Printsypar G. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: The influence of membrane microstructure. International journal of advances in engineering sciences and applied mathematics. 7 (1), 2–13 (2015). | |
dc.relation.referencesen | 3. Chetti A., Benamar A., Abdelkrim H. Modeling of Particle Migration in Porous Media: Application to Soil Suffusion. Transport in Porous Media. 113 (3), 591–606 (2016). | |
dc.relation.referencesen | 4. Civa F. Modified formulations of particle deposition and removal kinetics in saturated porous media. Transport in Porous Media. 111 (2), 381–410 (2016). | |
dc.relation.referencesen | 5. Gravelle A., Peysson Y., Tabary R., Egermann P. Experimental investigation and modelling of colloidal release in porous media. Transport in Porous Media. 88 (3), 441–459 (2011). | |
dc.relation.referencesen | 6. Husseinab M., Lesnica D., Ivanchov M., Snitkod H. Multiple time-dependent coefficient identification thermal problems with a free boundary. Appl. Num. Math. 99, 24–50 (2016). | |
dc.relation.referencesen | 7. Mittal R., Jain R. Numerical solutions of nonlinear Fisher’s reaction-diffusion equation with modified cubic B-spline collocation method. Math. Sci. 7 (1), 12 (2013). | |
dc.relation.referencesen | 8. Peng Ch., Xu G., WuW., Yu H., Wangc Ch. Multiphase SPH modeling of free surface flow in porous media with variable porosity. Computers and Geotechnics. 81, 239–248 (2017). | |
dc.relation.referencesen | 9. Shi M., Printsypar G., Iliev O., Calo V., Amy G., Nunes S. Water flow prediction based on 3D membrane morphology simulation. J. Membr. Sci. 487, 19–31 (2015). | |
dc.relation.referencesen | 10. Orlov V., Martynov S., Kunitskiy S. Energy saving in water treatment technologies with polystyrene foam filters. Journal of Water and Land Development. 31 (X-XII), 119–122 (2016). | |
dc.relation.referencesen | 11. Orlov V., Martynov S., Kunitskiy S. Water defferrization in polystyrene foam filters with sediment layer. LAP LAMBERT Academic Publishing, Saarbrucken. 94 p. (2016). | |
dc.relation.referencesen | 12. Bomba A., Safonyk A., Fursachik E. Identification of mass transfer distribution factor and its account for magnetic filtration process modeling. Journal of Automation and Information Sciences. 45 (4), 16–22 (2013). | |
dc.relation.referencesen | 13. Orlov V., Safonyk A., Martynov S. Simulation the process of iron removal the underground water by polystyrene foam filters. International Journal of Pure and Applied Mathematics. 109 (4), 881–888 (2016). | |
dc.relation.referencesen | 14. Safonyk A. Modelling the filtration processes of liquids from multicomponent contamination in the conditions of authentication of mass transfer coefficient. Int. J. Math. Models and Methods in Appl. Sciences. 9, 189–192 (2015). | |
dc.relation.referencesen | 15. Safonyk A. Modelling of biological purification process taking into account the temperature mode. Int. J. Math. Models and Methods in Appl. Sciences. 12, 68 (2018). | |
dc.relation.referencesen | 16. Bomba A., Klymiuk Yu., Prysiazhniuk I., Prysiazhniuk O., Safonyk A. Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles. AIP Conference Proceedings. 1773 (1), 040003 (2016). | |
dc.relation.referencesen | 17. Bomba A., Safonik A. Mathematical simulation of the process of aerobic treatment of wastewater under conditions of diffusion and mass transfer perturbations. Journal of Engineering Physics and Thermophysics. 91 (2), 318–323 (2018). | |
dc.relation.referencesen | 18. Safonyk A., Martynov S., Kunytsky S., Pinchuk O. Mathematical modelling of regeneration the filtering media bed of granular filters. Advances in Modelling and Analysis P. 73 (2). 72–78 (2018). | |
dc.rights.holder | CMM IAPMM NASU | |
dc.rights.holder | © 2018 Lviv Polytechnic National University | |
dc.subject | багатокомпонентне забруднення | |
dc.subject | обернена задача | |
dc.subject | умова перевизначення | |
dc.subject | асимптотичний розв’язок | |
dc.subject | ідентифікація | |
dc.subject | просторова модель | |
dc.subject | multicomponent pollutant | |
dc.subject | inverse problem | |
dc.subject | overdeterminatiom condition | |
dc.subject | asymptotic solution | |
dc.subject | identification | |
dc.subject | spatial modeling | |
dc.subject.udc | : 519.63:532.5 | |
dc.subject.udc | 519.63 | |
dc.subject.udc | 532.5 | |
dc.title | Spatial modeling of multicomponent pollution removal for liquid treatment under identification of mass transfer coefficient | |
dc.title.alternative | Просторове моделювання процесу очищення рідини від багатокомпонентного забруднення за умов ідентифікації масообмінного коефіцієнта | |
dc.type | Article |
Files
License bundle
1 - 1 of 1