On properties of solutions for Fokker–Planck–Kolmogorov equations

dc.citation.epage168
dc.citation.issue1
dc.citation.spage158
dc.contributor.affiliationНацiональний унiверситет “Львiвська полiтехнiка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМединський, І. П.
dc.contributor.authorMedynsky, I. P.
dc.date.accessioned2023-03-06T12:28:17Z
dc.date.available2023-03-06T12:28:17Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractУ статтi висвiтлюється зв’язок мiж дифузiйними процесами i диференцiальними рiвняннями з частинними похiдними параболiчного типу. Зроблено акцент на вироджених параболiчних рiвняннях з дiйсними коефiцiєнтами. Цi рiвняння є узагальненням класичного рiвняння дифузiї з iнерцiєю Колмогорова. Такi рiвняння природно розглядати як рiвняння Фоккера–Планка–Колмогорова для вiдповiдних вироджених дифузiйних процесiв. Фундаментальний розв’язок задачi Кошi для рiвняння Фоккера–Планка–Колмогорова визначає густину перехiдних iмовiрностей вiдповiдного дифузiйного процесу. Сформульовано умови на коефiцiєнти рiвняння за яких iснує класичний фундаментальний розв’язок задачi Кошi i доведено ряд його основних властивостей, а також наведено застосування фундаментального розв’язку до дослiдження коректної розв’язностi задачi Кошi.
dc.description.abstractIn the paper, we illuminate the connection between diffusion processes and partial differential equations of parabolic type. The emphasis is on degenerate parabolic equations with real-valued coefficients. These equations are the generalization of the classical Kolmogorov equation of diffusion with inertia, which may be treated as Fokker–Planck–Kolmogorov equations for the corresponding degenerate diffusion processes. A fundamental solution of the Cauchy problem for Fokker–Planck–Kolmogorov equation determines the transition probabilities to the corresponding diffusion process. The conditions on the coefficients under which there exists the classical fundamental solution are formulated. The basic properties of fundamental solutions are proved. The application of the fundamental solution to the investigation of correct solvability for the Cauchy problem is presented.
dc.format.extent158-168
dc.format.pages11
dc.identifier.citationMedynsky I. P. On properties of solutions for Fokker–Planck–Kolmogorov equations / Medynsky I. P. // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 158–168.
dc.identifier.citationenMedynsky I. P. (2020) On properties of solutions for Fokker–Planck–Kolmogorov equations. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 158-168.
dc.identifier.doiDOI: 10.23939/mmc2020.01.158
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57510
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] Eidelman S. D., Ivasyshen S. D., Kochubei A. N. Analytic Methods in the Theory of Differential and PseudoDifferential Equations of Parabolic Type. Birkh¨auser Verlag, Basel-Boston–Berlin (2004
dc.relation.references[2] Kolmogoroff A. N. Ube ¨ r die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Mathematische Annalen. 104, 415–458 (1931).
dc.relation.references[3] Einstein A. Investigations on the Theory of the Brownian Movement. Dover, New-York (1956).
dc.relation.references[4] Einstein A., von Smoluchowski M. Brownsche Bewegung. Verlag Harri Dentsch, Frankfurt am Main (1997).
dc.relation.references[5] Uhlenbeck E. B., Ornstein L. S. On the theory of Brownian motion. Phys. Rev. 36, 823–841 (1930).
dc.relation.references[6] Kolmogoroff A. N. Zuf¨allige Bewegungen (zur Theorie der Brownschen Bewegung). Annals of Mathematics. Second Series. 35 (1), 116–117 (1934).
dc.relation.references[7] Dynkin E. B. Markov Processes I, II. Springer, Berlin (1965).
dc.relation.references[8] Doob I. L. Stochastic Processes. Wiley, New York (1953).
dc.relation.references[9] Portenko N. I. Generalized Diffusion Processes. Vol. 83. Am. Math. Soc. (1990).
dc.relation.references[10] Sonin I. M. On a class of degenerate diffusion processes. Theor. Probab. Appl. 12 (3), 49–496 (1967).
dc.relation.references[11] Ivasyshen S. D., Medynsky I. P. The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes. Theory of Stochastic Processes. 16(32) (1), 37–66 (2010).
dc.relation.references[12] Citti G., Pascucci A., Polidoro S. On the regularity of solutions to a nonlinear ultraparabolic equations arising in mathematical finance. Differ. Integral Equat. 14 (6), 701–739 (2001).
dc.relation.references[13] Pascucci A., Polidoro S., Lanconelli E. Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. Nonlinear Problems in Mathematical Physics and Related Topics, vol. II. In Honor of Professor O. A. Ladyzhenskaya. International Mathematical Series, pp. 243–265 (2002).
dc.relation.references[14] Pascucci A. Kolmogorov Equations in Physics and in Finance. In: Bandle C. et al. (eds) Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 63, pp. 353–364 (2005).
dc.relation.references[15] Di Francyesco M., Pascucci A. A cotinuous dependence result for ultraparabolic equations in option pricing. J. Math. Anal. Appl. 336 (2), 1026–1041 (2007).
dc.relation.references[16] Di Francyesco M., Pascucci A. On a class of degenerate parabolic equations of Kolmogorov type. Applied Mathematics Research eXpress. 2005 (3), 77–116 (2005).
dc.relation.references[17] Foschi P., Pascucci A. Kolmogorov equationsa arising in finance: direct and inverce problems. Lect. Notes of Seminario Interdisciplinare di Matematica. Universita degli Studi della Basilicata. VI, 145–156 (2007).
dc.relation.references[18] Lanconelli E., Polidoro S. On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino. Partial Diff. Eqs. 52 (1), 29–63 (1994).
dc.relation.references[19] Polidoro S. On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Le Matematiche.49 (1), 53–105 (1994).
dc.relation.references[20] Bogachev N. U., Krylov N. V., R¨ockner M., Shaposhnikov S. V. Fokker–Planck–Kolmogorov equations.Vol. 207. Am. Math. Soc. (2015).
dc.relation.references[21] Bogachev N. U., R¨ockner M., Shaposhnikov S. V. On convergence to stationary distributions for solutions of nonlinear Fokker-Planck-Kolmogorov equations. J. Math. Sci. 242 (1), 69–84 (2019).
dc.relation.references[22] Ivasyshen S. D., Medynsky I. P. On aplications of the Levi method in the theory of parabolic equations. Matematychni Studii. 47 (1), 33–46 (2017).
dc.relation.references[23] Ivasyshen S. D., Medynsky I. P. The classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov type equations with two groups spatial variables of degeneration. I. Mat. Metody Fiz.-Mech. Polya. 60 (3), 9–31 (2017), (in Ukrainian).
dc.relation.references[24] Ivasyshen S. D., Medynsky I. P. The classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov type equations with two groups spatial variables of degeneration. II. Mat. Metody Fiz.-Mech. Polya. 60 (4), 7–24 (2017), (in Ukrainian).
dc.relation.references[25] Ivasyshen S. D., Medyns’kyi I. P. On the Classical Fundamental Solutions of the Cauchy Problem for Ultraparabolic Kolmogorov–Type Equations with Two Groups of Spatial Variables. J. Math. Sci. 231, 507–526(2018).
dc.relation.referencesen[1] Eidelman S. D., Ivasyshen S. D., Kochubei A. N. Analytic Methods in the Theory of Differential and PseudoDifferential Equations of Parabolic Type. Birkh¨auser Verlag, Basel-Boston–Berlin (2004
dc.relation.referencesen[2] Kolmogoroff A. N. Ube ¨ r die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Mathematische Annalen. 104, 415–458 (1931).
dc.relation.referencesen[3] Einstein A. Investigations on the Theory of the Brownian Movement. Dover, New-York (1956).
dc.relation.referencesen[4] Einstein A., von Smoluchowski M. Brownsche Bewegung. Verlag Harri Dentsch, Frankfurt am Main (1997).
dc.relation.referencesen[5] Uhlenbeck E. B., Ornstein L. S. On the theory of Brownian motion. Phys. Rev. 36, 823–841 (1930).
dc.relation.referencesen[6] Kolmogoroff A. N. Zuf¨allige Bewegungen (zur Theorie der Brownschen Bewegung). Annals of Mathematics. Second Series. 35 (1), 116–117 (1934).
dc.relation.referencesen[7] Dynkin E. B. Markov Processes I, II. Springer, Berlin (1965).
dc.relation.referencesen[8] Doob I. L. Stochastic Processes. Wiley, New York (1953).
dc.relation.referencesen[9] Portenko N. I. Generalized Diffusion Processes. Vol. 83. Am. Math. Soc. (1990).
dc.relation.referencesen[10] Sonin I. M. On a class of degenerate diffusion processes. Theor. Probab. Appl. 12 (3), 49–496 (1967).
dc.relation.referencesen[11] Ivasyshen S. D., Medynsky I. P. The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes. Theory of Stochastic Processes. 16(32) (1), 37–66 (2010).
dc.relation.referencesen[12] Citti G., Pascucci A., Polidoro S. On the regularity of solutions to a nonlinear ultraparabolic equations arising in mathematical finance. Differ. Integral Equat. 14 (6), 701–739 (2001).
dc.relation.referencesen[13] Pascucci A., Polidoro S., Lanconelli E. Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. Nonlinear Problems in Mathematical Physics and Related Topics, vol. II. In Honor of Professor O. A. Ladyzhenskaya. International Mathematical Series, pp. 243–265 (2002).
dc.relation.referencesen[14] Pascucci A. Kolmogorov Equations in Physics and in Finance. In: Bandle C. et al. (eds) Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 63, pp. 353–364 (2005).
dc.relation.referencesen[15] Di Francyesco M., Pascucci A. A cotinuous dependence result for ultraparabolic equations in option pricing. J. Math. Anal. Appl. 336 (2), 1026–1041 (2007).
dc.relation.referencesen[16] Di Francyesco M., Pascucci A. On a class of degenerate parabolic equations of Kolmogorov type. Applied Mathematics Research eXpress. 2005 (3), 77–116 (2005).
dc.relation.referencesen[17] Foschi P., Pascucci A. Kolmogorov equationsa arising in finance: direct and inverce problems. Lect. Notes of Seminario Interdisciplinare di Matematica. Universita degli Studi della Basilicata. VI, 145–156 (2007).
dc.relation.referencesen[18] Lanconelli E., Polidoro S. On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino. Partial Diff. Eqs. 52 (1), 29–63 (1994).
dc.relation.referencesen[19] Polidoro S. On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Le Matematiche.49 (1), 53–105 (1994).
dc.relation.referencesen[20] Bogachev N. U., Krylov N. V., R¨ockner M., Shaposhnikov S. V. Fokker–Planck–Kolmogorov equations.Vol. 207. Am. Math. Soc. (2015).
dc.relation.referencesen[21] Bogachev N. U., R¨ockner M., Shaposhnikov S. V. On convergence to stationary distributions for solutions of nonlinear Fokker-Planck-Kolmogorov equations. J. Math. Sci. 242 (1), 69–84 (2019).
dc.relation.referencesen[22] Ivasyshen S. D., Medynsky I. P. On aplications of the Levi method in the theory of parabolic equations. Matematychni Studii. 47 (1), 33–46 (2017).
dc.relation.referencesen[23] Ivasyshen S. D., Medynsky I. P. The classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov type equations with two groups spatial variables of degeneration. I. Mat. Metody Fiz.-Mech. Polya. 60 (3), 9–31 (2017), (in Ukrainian).
dc.relation.referencesen[24] Ivasyshen S. D., Medynsky I. P. The classical fundamental solution of the Cauchy problem for ultraparabolic Kolmogorov type equations with two groups spatial variables of degeneration. II. Mat. Metody Fiz.-Mech. Polya. 60 (4), 7–24 (2017), (in Ukrainian).
dc.relation.referencesen[25] Ivasyshen S. D., Medyns’kyi I. P. On the Classical Fundamental Solutions of the Cauchy Problem for Ultraparabolic Kolmogorov–Type Equations with Two Groups of Spatial Variables. J. Math. Sci. 231, 507–526(2018).
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectдифузiйний процес
dc.subjectперехiдна ймовiрнiсть процесу
dc.subjectрiвняння Фоккера–Планка–Колмогорова
dc.subjectвироджене параболiчне рiвняння
dc.subjectфундаментальний розв’язок
dc.subjectзадача Кошi
dc.subjectdiffusion process
dc.subjecttransition probability to a process
dc.subjectFokker–Planck–Kolmogorov equation
dc.subjectdegenerate parabolic equation
dc.subjectfundamental solution
dc.subjectCauchy problem
dc.subject.udc35K15
dc.subject.udc35K65
dc.subject.udc60J60
dc.titleOn properties of solutions for Fokker–Planck–Kolmogorov equations
dc.title.alternativeПро властивості розв’язків рівнянь Фоккера–Планка–Колмогорова
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v7n1_Medynsky_I_P-On_properties_of_solutions_158-168.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: