On the computational estimation of high order GARCH model

dc.citation.epage806
dc.citation.issue4
dc.citation.spage797
dc.contributor.affiliationУніверситет Султана Мулая Слімана
dc.contributor.affiliationУніверситет Мохаммеда Першого
dc.contributor.affiliationSultan Moulay Slimane University
dc.contributor.affiliationMohammed First University
dc.contributor.authorСеттар, А.
dc.contributor.authorФатмі, Н. І.
dc.contributor.authorБадауї, М.
dc.contributor.authorSettar, A.
dc.contributor.authorFatmi, N. I.
dc.contributor.authorBadaoui, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-11-01T07:49:36Z
dc.date.available2023-11-01T07:49:36Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractЩоб гарантувати невід’ємність умовної дисперсії процесу GARCH, достатньо припустити невід’ємність її параметрів. Ця умова була емпірично порушена, що зробило модель GARCH більш обмеженою. Після цього ця умова була послаблена для деяких виборів необхідних та достатніх обмежень. У цій роботі узагальнено підхід для оцінки QML параметрів GARCH(p, q) для всіх порядків p > 1 та q > 1, використовуючи обмежений фільтр Калмана. Такий підхід дозволяє послаблену оцінку QML для GARCH без необхідності виявляти та/або застосовувати послаблені обмеження на параметри. Ефективність запропонованого методу демонструється за допомогою моделювання Монте–Карло та емпіричних застосувань до реальних даних.
dc.description.abstractTo guarantee the non-negativity of the conditional variance of the GARCH process, it is sufficient to assume the non-negativity of its parameters. This condition was empirically violated besides rendering the GARCH model more restrictive. It was subsequently relaxed for some GARCH orders by necessary and sufficient constraints. In this paper, we generalized an approach for the QML estimation of the GARCH(p, q) parameters for all orders p > 1 and q > 1 using a constrained Kalman filter. Such an approach allows a relaxed QML estimation of the GARCH without the need to identify and/or apply the relaxed constraints to the parameters. The performance of our method is demonstrated through Monte Carlo simulations and empirical applications to real data.
dc.format.extent797-806
dc.format.pages10
dc.identifier.citationSettar A. On the computational estimation of high order GARCH model / A. Settar, N. I. Fatmi, M. Badaoui // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 797–806.
dc.identifier.citationenSettar A. On the computational estimation of high order GARCH model / A. Settar, N. I. Fatmi, M. Badaoui // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 797–806.
dc.identifier.doi10.23939/mmc2021.04.797
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60444
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 4 (8), 2021
dc.relation.references[1] Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics. 31 (3), 307–327 (1986).
dc.relation.references[2] French K. R., Schwert G. W., Stambaugh R. F. Expected stock returns and volatility. Journal of financial Economics. 19 (1), 3–29 (1987).
dc.relation.references[3] Engle R. F., Ito T., Lin W. L. Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. Working paper No. 2609 (1988).
dc.relation.references[4] Nelson D. B., Cao C. Q. Inequality constraints in the univariate GARCH model. Journal of Business & Economic Statistics. 10 (2), 229–235 (1992).
dc.relation.references[5] Tsai H., Chan K. S. A note on inequality constraints in the GARCH model. Econometric Theory. 24 (3), 823–828 (2008).
dc.relation.references[6] Conrad C., Karanasos M. Negative volatility spillovers in the unrestricted ECCC-GARCH model. Econometric Theory. 26 (3), 838–862 (2010).
dc.relation.references[7] He C., Ter¨asvirta T. Properties of the Autocorrelation Function of Squared Observations for Second-order Garch Processes Under Two Sets of Parameter Constraints. Journal of Time Series Analysis. 20, 23–30 (1999).
dc.relation.references[8] Wuertz D., Wuertz M. D., Team R. C. The fGarch Package. Wuertz, Diethelm, Maintainer Diethelm Wuertz, and Rmetrics Core Team (2013).
dc.relation.references[9] Ghalanos A., Ghalanos M. A., Rcpp L. Package ’rugarch’ (2019).
dc.relation.references[10] Settar A., Fatmi N. I., Badaoui M. New Approach in Dealing with the Non-Negativity of the Conditional Variance in the Estimation of GARCH Model. Central European Journal of Economic Modelling and Econometrics. 13 (1), 55–74 (2021).
dc.relation.references[11] Settar A., Fatmi N. I., Badaoui M. Quasi-maximum likelihood estimation of the Component-GARCH model using the stochastic approximation algorithm with application to the S&P 500. Mathematical Modeling and Computing. 8 (3), 379–390 (2021).
dc.relation.references[12] Hung J. C. Robust Kalman filter based on a fuzzy GARCH model to forecast volatility using particle swarm optimization. Soft Computing. 19, 2861–2869 (2015).
dc.relation.references[13] Simon D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons (2006).
dc.relation.references[14] Steenbergen M. R. Maximum likelihood programming in R. University of North Carolina. Chapel Hill (2006).
dc.relation.references[15] Baillie R. T., Bollerslev T. The message in daily exchange rates: a conditional-variance tale. Journal of Business & Economic Statistics. 20 (1), 60–68 (1989).
dc.relation.referencesen[1] Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics. 31 (3), 307–327 (1986).
dc.relation.referencesen[2] French K. R., Schwert G. W., Stambaugh R. F. Expected stock returns and volatility. Journal of financial Economics. 19 (1), 3–29 (1987).
dc.relation.referencesen[3] Engle R. F., Ito T., Lin W. L. Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. Working paper No. 2609 (1988).
dc.relation.referencesen[4] Nelson D. B., Cao C. Q. Inequality constraints in the univariate GARCH model. Journal of Business & Economic Statistics. 10 (2), 229–235 (1992).
dc.relation.referencesen[5] Tsai H., Chan K. S. A note on inequality constraints in the GARCH model. Econometric Theory. 24 (3), 823–828 (2008).
dc.relation.referencesen[6] Conrad C., Karanasos M. Negative volatility spillovers in the unrestricted ECCC-GARCH model. Econometric Theory. 26 (3), 838–862 (2010).
dc.relation.referencesen[7] He C., Ter¨asvirta T. Properties of the Autocorrelation Function of Squared Observations for Second-order Garch Processes Under Two Sets of Parameter Constraints. Journal of Time Series Analysis. 20, 23–30 (1999).
dc.relation.referencesen[8] Wuertz D., Wuertz M. D., Team R. C. The fGarch Package. Wuertz, Diethelm, Maintainer Diethelm Wuertz, and Rmetrics Core Team (2013).
dc.relation.referencesen[9] Ghalanos A., Ghalanos M. A., Rcpp L. Package ’rugarch’ (2019).
dc.relation.referencesen[10] Settar A., Fatmi N. I., Badaoui M. New Approach in Dealing with the Non-Negativity of the Conditional Variance in the Estimation of GARCH Model. Central European Journal of Economic Modelling and Econometrics. 13 (1), 55–74 (2021).
dc.relation.referencesen[11] Settar A., Fatmi N. I., Badaoui M. Quasi-maximum likelihood estimation of the Component-GARCH model using the stochastic approximation algorithm with application to the S&P 500. Mathematical Modeling and Computing. 8 (3), 379–390 (2021).
dc.relation.referencesen[12] Hung J. C. Robust Kalman filter based on a fuzzy GARCH model to forecast volatility using particle swarm optimization. Soft Computing. 19, 2861–2869 (2015).
dc.relation.referencesen[13] Simon D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons (2006).
dc.relation.referencesen[14] Steenbergen M. R. Maximum likelihood programming in R. University of North Carolina. Chapel Hill (2006).
dc.relation.referencesen[15] Baillie R. T., Bollerslev T. The message in daily exchange rates: a conditional-variance tale. Journal of Business & Economic Statistics. 20 (1), 60–68 (1989).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectGARCH
dc.subjectобмежений фільтр Калмана
dc.subjectумовна дисперсія
dc.subjectволатильність
dc.subjectквазімаксимальна ймовірність
dc.subjectGARCH
dc.subjectconstrained Kalman filter
dc.subjectconditional variance
dc.subjectvolatility
dc.subjectquasimaximum likelihood
dc.titleOn the computational estimation of high order GARCH model
dc.title.alternativeПро обчислювальну оцінку моделі GARCH високого порядку
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v8n4_Settar_A-On_the_computational_estimation_797-806.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v8n4_Settar_A-On_the_computational_estimation_797-806__COVER.png
Size:
387.5 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: