Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine
dc.citation.epage | 17 | |
dc.citation.issue | 1 | |
dc.citation.spage | 11 | |
dc.contributor.affiliation | University of El Oued | |
dc.contributor.affiliation | University of Ouargla | |
dc.contributor.author | Lanez, Elhafnaoui | |
dc.contributor.author | Bechki, Lazhar | |
dc.contributor.author | Lanez, Touhami | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-03-02T10:50:15Z | |
dc.date.available | 2020-03-02T10:50:15Z | |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.description.abstract | З використанням методів циклічної вольтамперометрії та електронної спектроскопії за одна- кових умов проведені вимірювання вільної енергії 9N-(ферро- ценілметил)аденину (ФMA) з дволанцюговою ДНК. Отримані результати підтверджені обчислювальним молекулярним докінгом. Показано, що док-результати добре узгоджуються з експериментальними даними і що ліганд ФMA поміщений у невелику борозенку спіралі ДНК. | |
dc.description.abstract | The binding free energy of 9N-(ferrocenylmethyl) adenine (FMA) with double-stranded deoxyribonucleic acid (DNA) was measured in solution using cyclic voltammetry and electronic spectroscopy (UV-Vis) techniques under similar conditions. The obtained results were confirmed by computational molecular docking. The docking studies yield good approximation with experimental data and showed that the ligand FMA is placed in the minor groove of DNA. | |
dc.format.extent | 11-17 | |
dc.format.pages | 7 | |
dc.identifier.citation | Lanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17. | |
dc.identifier.citationen | Lanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46425 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (13), 2019 | |
dc.relation.references | 1. Kealy T., Pauson P.: Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0 | |
dc.relation.references | 2. Miller S., Tebboth J., Tremaine J.: J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632 | |
dc.relation.references | 3. Wilkinson G., RosenblumM., WhitingM. et al.: J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527 | |
dc.relation.references | 4. Xian-Feng H., Ling-Zhu W., Long T. et al.: J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043 | |
dc.relation.references | 5. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J | |
dc.relation.references | 6. Ornelas C.: New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/C1NJ20172G | |
dc.relation.references | 7. Kondapi A., Satyanarayana N., Saikrishna A.: Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003 | |
dc.relation.references | 8. StrugaM., Kossakowski J., Kedzierska E. et al.: Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796 | |
dc.relation.references | 9. Biot B., Francois N., Maciejewski L. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7 | |
dc.relation.references | 10. Itoh T., Shirakami S., Ishida N. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9 | |
dc.relation.references | 11. Swarts J., Vosloo T., Cronge S. et al.: Anticancer Res., 2008, 28, 2781. | |
dc.relation.references | 12. Acevedo-Morantes C., Meléndez E., Singh P. et al.: J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154 | |
dc.relation.references | 13. MoradM., Sarhan A.: Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002 | |
dc.relation.references | 14. Gupta S., Mourya P., SinghM. et al.: J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038 | |
dc.relation.references | 15. Van Staveren D., Metzler-Nolte N.: Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510 | |
dc.relation.references | 16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al.: Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202 | |
dc.relation.references | 17. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J | |
dc.relation.references | 18. Scaria V., Furlani A., Longato B. et al.: Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9 | |
dc.relation.references | 19. Neuse E., MeirimM., Blom N.: Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023 | |
dc.relation.references | 20. Houlton A., Roberts R., Silver J.: J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3 | |
dc.relation.references | 21. Houlton A., Christian J., Ashleigh E. et al.: J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F | |
dc.relation.references | 22. Price C., AslanogluM., Christian J. et al.: J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115 | |
dc.relation.references | 23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8 | |
dc.relation.references | 24. Hussain R., Badshah A., Tahir M. et al.: Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570 | |
dc.relation.references | 25. Jalali F., Dorraji P.: J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005 | |
dc.relation.references | 26. Radi A., Eissa A., Nassef H.: J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007 | |
dc.relation.references | 27. Osgerby J., Pauson P.: J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656 | |
dc.relation.references | 28. Snegur L., Yu S., Nekrasov N. et al.: Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362 | |
dc.relation.references | 29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644. | |
dc.relation.references | 30. Glasel J.: Biotechniques, 1995, 8, 62. | |
dc.relation.references | 31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al.: Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707 | |
dc.relation.references | 32. Lu X., Zhu K., ZhangM. et al.: J. Biochem. Biophys. Met., 2002, 52, 189. | |
dc.relation.references | 33. AslanogluM., Ayne G.: Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5 | |
dc.relation.references | 34. Zhao G., Zhu J., Zhang J. et al.: Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5 | |
dc.relation.references | 35. Atkins P.: Physical Chemistry. Oxford University Press, Oxford 1986, 263-265. | |
dc.relation.references | 36. Xu Z., Bai G., Dong C.: Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023 | |
dc.relation.references | 37. Ye H., Cande C., Stephanou N.: Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836 | |
dc.relation.references | 38. Li D., Huang F., Chen G. et al.: J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008 | |
dc.relation.references | 39. Brett C., Brett A.: Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276. | |
dc.relation.references | 40. NieM., Wang Y., Li H.: Pol. J. Chem., 1997, 71, 816. | |
dc.relation.references | 41. FrischM., Trucks G., Schlegel H. et al.: Gaussian 09. Gaussian Inc., Wallingford CT, 2009. | |
dc.relation.references | 42. Becke A.: J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913 | |
dc.relation.references | 43. Miehlich B., Savin A., Stoll H. et al.: Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3 | |
dc.relation.references | 44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256 | |
dc.relation.references | 45. Berman H., Westbrook J., Feng Z. et al.: Nucl. Acids Res., 2000, 28, 235. | |
dc.relation.references | 46. Lanez T., Benaicha H., Lanez E. et al.: J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811 | |
dc.relation.referencesen | 1. Kealy T., Pauson P., Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0 | |
dc.relation.referencesen | 2. Miller S., Tebboth J., Tremaine J., J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632 | |
dc.relation.referencesen | 3. Wilkinson G., RosenblumM., WhitingM. et al., J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527 | |
dc.relation.referencesen | 4. Xian-Feng H., Ling-Zhu W., Long T. et al., J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043 | |
dc.relation.referencesen | 5. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J | |
dc.relation.referencesen | 6. Ornelas C., New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/P.1NJ20172G | |
dc.relation.referencesen | 7. Kondapi A., Satyanarayana N., Saikrishna A., Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003 | |
dc.relation.referencesen | 8. StrugaM., Kossakowski J., Kedzierska E. et al., Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796 | |
dc.relation.referencesen | 9. Biot B., Francois N., Maciejewski L. et al., Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7 | |
dc.relation.referencesen | 10. Itoh T., Shirakami S., Ishida N. et al., Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9 | |
dc.relation.referencesen | 11. Swarts J., Vosloo T., Cronge S. et al., Anticancer Res., 2008, 28, 2781. | |
dc.relation.referencesen | 12. Acevedo-Morantes C., Meléndez E., Singh P. et al., J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154 | |
dc.relation.referencesen | 13. MoradM., Sarhan A., Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002 | |
dc.relation.referencesen | 14. Gupta S., Mourya P., SinghM. et al., J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038 | |
dc.relation.referencesen | 15. Van Staveren D., Metzler-Nolte N., Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510 | |
dc.relation.referencesen | 16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al., Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202 | |
dc.relation.referencesen | 17. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J | |
dc.relation.referencesen | 18. Scaria V., Furlani A., Longato B. et al., Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9 | |
dc.relation.referencesen | 19. Neuse E., MeirimM., Blom N., Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023 | |
dc.relation.referencesen | 20. Houlton A., Roberts R., Silver J., J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3 | |
dc.relation.referencesen | 21. Houlton A., Christian J., Ashleigh E. et al., J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F | |
dc.relation.referencesen | 22. Price C., AslanogluM., Christian J. et al., J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115 | |
dc.relation.referencesen | 23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8 | |
dc.relation.referencesen | 24. Hussain R., Badshah A., Tahir M. et al., Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570 | |
dc.relation.referencesen | 25. Jalali F., Dorraji P., J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005 | |
dc.relation.referencesen | 26. Radi A., Eissa A., Nassef H., J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007 | |
dc.relation.referencesen | 27. Osgerby J., Pauson P., J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656 | |
dc.relation.referencesen | 28. Snegur L., Yu S., Nekrasov N. et al., Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362 | |
dc.relation.referencesen | 29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644. | |
dc.relation.referencesen | 30. Glasel J., Biotechniques, 1995, 8, 62. | |
dc.relation.referencesen | 31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al., Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707 | |
dc.relation.referencesen | 32. Lu X., Zhu K., ZhangM. et al., J. Biochem. Biophys. Met., 2002, 52, 189. | |
dc.relation.referencesen | 33. AslanogluM., Ayne G., Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5 | |
dc.relation.referencesen | 34. Zhao G., Zhu J., Zhang J. et al., Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5 | |
dc.relation.referencesen | 35. Atkins P., Physical Chemistry. Oxford University Press, Oxford 1986, 263-265. | |
dc.relation.referencesen | 36. Xu Z., Bai G., Dong C., Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023 | |
dc.relation.referencesen | 37. Ye H., Cande C., Stephanou N., Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836 | |
dc.relation.referencesen | 38. Li D., Huang F., Chen G. et al., J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008 | |
dc.relation.referencesen | 39. Brett C., Brett A., Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276. | |
dc.relation.referencesen | 40. NieM., Wang Y., Li H., Pol. J. Chem., 1997, 71, 816. | |
dc.relation.referencesen | 41. FrischM., Trucks G., Schlegel H. et al., Gaussian 09. Gaussian Inc., Wallingford CT, 2009. | |
dc.relation.referencesen | 42. Becke A., J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913 | |
dc.relation.referencesen | 43. Miehlich B., Savin A., Stoll H. et al., Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3 | |
dc.relation.referencesen | 44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256 | |
dc.relation.referencesen | 45. Berman H., Westbrook J., Feng Z. et al., Nucl. Acids Res., 2000, 28, 235. | |
dc.relation.referencesen | 46. Lanez T., Benaicha H., Lanez E. et al., J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811 | |
dc.relation.uri | https://doi.org/10.1038/1681039b0 | |
dc.relation.uri | https://doi.org/10.1039/JR9520000632 | |
dc.relation.uri | https://doi.org/10.1021/ja01128a527 | |
dc.relation.uri | https://doi.org/10.1016/j.jorganchem.2013.08.043 | |
dc.relation.uri | https://doi.org/10.1039/C2DT31570J | |
dc.relation.uri | https://doi.org/10.1039/C1NJ20172G | |
dc.relation.uri | https://doi.org/ | |
dc.relation.uri | https://doi.org/10.1248/cpb.55.796 | |
dc.relation.uri | https://doi.org/10.1016/S0960-894X(00)00120-7 | |
dc.relation.uri | https://doi.org/10.4172/1948-5956.1000154 | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2007.09.002 | |
dc.relation.uri | https://doi.org/10.1016/j.jorganchem.2014.05.038 | |
dc.relation.uri | https://doi.org/10.1021/cr0101510 | |
dc.relation.uri | https://doi.org/10.1002/aoc.1202 | |
dc.relation.uri | https://doi.org/10.1016/S0020-1693(00)83359-9 | |
dc.relation.uri | https://doi.org/10.1021/om00102a023 | |
dc.relation.uri | https://doi.org/10.1016/S1387-1609(00)00118-3 | |
dc.relation.uri | https://doi.org/10.1039/A905168F | |
dc.relation.uri | https://doi.org/10.1039/DT9960004115 | |
dc.relation.uri | http://dx.doi.org/10.1007/s00044-012-0311-8 | |
dc.relation.uri | https://doi.org/10.1071/CH12570 | |
dc.relation.uri | https://doi.org/10.1016/j.jpba.2012.06.005 | |
dc.relation.uri | https://doi.org/10.1016/j.jelechem.2014.01.007 | |
dc.relation.uri | https://doi.org/10.1039/JR9580000656 | |
dc.relation.uri | https://doi.org/10.1002/aoc.1362 | |
dc.relation.uri | https://doi.org/10.1006/bbrc.2000.2707 | |
dc.relation.uri | https://doi.org/10.1007/s00216-004-2797-5 | |
dc.relation.uri | https://doi.org/10.1016/S0003-2670(99)00292-5 | |
dc.relation.uri | https://doi.org/10.1016/j.bmc.2005.06.023 | |
dc.relation.uri | https://doi.org/10.1038/nsb836 | |
dc.relation.uri | https://doi.org/10.1016/j.jinorgbio.2009.12.008 | |
dc.relation.uri | https://doi.org/10.1063/1.464913 | |
dc.relation.uri | https://doi.org/10.1016/0009-2614(89)87234-3 | |
dc.relation.uri | https://doi.org/10.1002/jcc.21256 | |
dc.relation.uri | https://doi.org/10.1080/17415993.2017.1391811 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Lanez E., Bechki L., Lanez T., 2019 | |
dc.subject | ДНК | |
dc.subject | енергія вільного зв’язування | |
dc.subject | AutoDock | |
dc.subject | розмір ділянки зв’язування | |
dc.subject | коефіцієнт дифузії | |
dc.subject | DNA | |
dc.subject | free binding energy | |
dc.subject | AutoDock | |
dc.subject | size of binding site | |
dc.subject | diffusion coefficient | |
dc.title | Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine | |
dc.title.alternative | Обчислювальний молекулярний докінг, волтаметричні та спектроскопічні дослідження взаємодії ДНК з 9N-(ферроценілметил)аденіном | |
dc.type | Article |
Files
License bundle
1 - 1 of 1