Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine

dc.citation.epage17
dc.citation.issue1
dc.citation.spage11
dc.contributor.affiliationUniversity of El Oued
dc.contributor.affiliationUniversity of Ouargla
dc.contributor.authorLanez, Elhafnaoui
dc.contributor.authorBechki, Lazhar
dc.contributor.authorLanez, Touhami
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T10:50:15Z
dc.date.available2020-03-02T10:50:15Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractЗ використанням методів циклічної вольтамперометрії та електронної спектроскопії за одна- кових умов проведені вимірювання вільної енергії 9N-(ферро- ценілметил)аденину (ФMA) з дволанцюговою ДНК. Отримані результати підтверджені обчислювальним молекулярним докінгом. Показано, що док-результати добре узгоджуються з експериментальними даними і що ліганд ФMA поміщений у невелику борозенку спіралі ДНК.
dc.description.abstractThe binding free energy of 9N-(ferrocenylmethyl) adenine (FMA) with double-stranded deoxyribonucleic acid (DNA) was measured in solution using cyclic voltammetry and electronic spectroscopy (UV-Vis) techniques under similar conditions. The obtained results were confirmed by computational molecular docking. The docking studies yield good approximation with experimental data and showed that the ligand FMA is placed in the minor groove of DNA.
dc.format.extent11-17
dc.format.pages7
dc.identifier.citationLanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17.
dc.identifier.citationenLanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46425
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019
dc.relation.references1. Kealy T., Pauson P.: Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0
dc.relation.references2. Miller S., Tebboth J., Tremaine J.: J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632
dc.relation.references3. Wilkinson G., RosenblumM., WhitingM. et al.: J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527
dc.relation.references4. Xian-Feng H., Ling-Zhu W., Long T. et al.: J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043
dc.relation.references5. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J
dc.relation.references6. Ornelas C.: New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/C1NJ20172G
dc.relation.references7. Kondapi A., Satyanarayana N., Saikrishna A.: Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003
dc.relation.references8. StrugaM., Kossakowski J., Kedzierska E. et al.: Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796
dc.relation.references9. Biot B., Francois N., Maciejewski L. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7
dc.relation.references10. Itoh T., Shirakami S., Ishida N. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9
dc.relation.references11. Swarts J., Vosloo T., Cronge S. et al.: Anticancer Res., 2008, 28, 2781.
dc.relation.references12. Acevedo-Morantes C., Meléndez E., Singh P. et al.: J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154
dc.relation.references13. MoradM., Sarhan A.: Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002
dc.relation.references14. Gupta S., Mourya P., SinghM. et al.: J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038
dc.relation.references15. Van Staveren D., Metzler-Nolte N.: Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510
dc.relation.references16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al.: Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202
dc.relation.references17. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J
dc.relation.references18. Scaria V., Furlani A., Longato B. et al.: Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9
dc.relation.references19. Neuse E., MeirimM., Blom N.: Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023
dc.relation.references20. Houlton A., Roberts R., Silver J.: J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3
dc.relation.references21. Houlton A., Christian J., Ashleigh E. et al.: J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F
dc.relation.references22. Price C., AslanogluM., Christian J. et al.: J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115
dc.relation.references23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8
dc.relation.references24. Hussain R., Badshah A., Tahir M. et al.: Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570
dc.relation.references25. Jalali F., Dorraji P.: J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005
dc.relation.references26. Radi A., Eissa A., Nassef H.: J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007
dc.relation.references27. Osgerby J., Pauson P.: J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656
dc.relation.references28. Snegur L., Yu S., Nekrasov N. et al.: Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362
dc.relation.references29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644.
dc.relation.references30. Glasel J.: Biotechniques, 1995, 8, 62.
dc.relation.references31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al.: Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707
dc.relation.references32. Lu X., Zhu K., ZhangM. et al.: J. Biochem. Biophys. Met., 2002, 52, 189.
dc.relation.references33. AslanogluM., Ayne G.: Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5
dc.relation.references34. Zhao G., Zhu J., Zhang J. et al.: Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5
dc.relation.references35. Atkins P.: Physical Chemistry. Oxford University Press, Oxford 1986, 263-265.
dc.relation.references36. Xu Z., Bai G., Dong C.: Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023
dc.relation.references37. Ye H., Cande C., Stephanou N.: Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836
dc.relation.references38. Li D., Huang F., Chen G. et al.: J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008
dc.relation.references39. Brett C., Brett A.: Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276.
dc.relation.references40. NieM., Wang Y., Li H.: Pol. J. Chem., 1997, 71, 816.
dc.relation.references41. FrischM., Trucks G., Schlegel H. et al.: Gaussian 09. Gaussian Inc., Wallingford CT, 2009.
dc.relation.references42. Becke A.: J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913
dc.relation.references43. Miehlich B., Savin A., Stoll H. et al.: Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
dc.relation.references44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256
dc.relation.references45. Berman H., Westbrook J., Feng Z. et al.: Nucl. Acids Res., 2000, 28, 235.
dc.relation.references46. Lanez T., Benaicha H., Lanez E. et al.: J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811
dc.relation.referencesen1. Kealy T., Pauson P., Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0
dc.relation.referencesen2. Miller S., Tebboth J., Tremaine J., J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632
dc.relation.referencesen3. Wilkinson G., RosenblumM., WhitingM. et al., J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527
dc.relation.referencesen4. Xian-Feng H., Ling-Zhu W., Long T. et al., J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043
dc.relation.referencesen5. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J
dc.relation.referencesen6. Ornelas C., New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/P.1NJ20172G
dc.relation.referencesen7. Kondapi A., Satyanarayana N., Saikrishna A., Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003
dc.relation.referencesen8. StrugaM., Kossakowski J., Kedzierska E. et al., Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796
dc.relation.referencesen9. Biot B., Francois N., Maciejewski L. et al., Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7
dc.relation.referencesen10. Itoh T., Shirakami S., Ishida N. et al., Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9
dc.relation.referencesen11. Swarts J., Vosloo T., Cronge S. et al., Anticancer Res., 2008, 28, 2781.
dc.relation.referencesen12. Acevedo-Morantes C., Meléndez E., Singh P. et al., J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154
dc.relation.referencesen13. MoradM., Sarhan A., Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002
dc.relation.referencesen14. Gupta S., Mourya P., SinghM. et al., J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038
dc.relation.referencesen15. Van Staveren D., Metzler-Nolte N., Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510
dc.relation.referencesen16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al., Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202
dc.relation.referencesen17. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J
dc.relation.referencesen18. Scaria V., Furlani A., Longato B. et al., Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9
dc.relation.referencesen19. Neuse E., MeirimM., Blom N., Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023
dc.relation.referencesen20. Houlton A., Roberts R., Silver J., J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3
dc.relation.referencesen21. Houlton A., Christian J., Ashleigh E. et al., J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F
dc.relation.referencesen22. Price C., AslanogluM., Christian J. et al., J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115
dc.relation.referencesen23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8
dc.relation.referencesen24. Hussain R., Badshah A., Tahir M. et al., Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570
dc.relation.referencesen25. Jalali F., Dorraji P., J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005
dc.relation.referencesen26. Radi A., Eissa A., Nassef H., J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007
dc.relation.referencesen27. Osgerby J., Pauson P., J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656
dc.relation.referencesen28. Snegur L., Yu S., Nekrasov N. et al., Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362
dc.relation.referencesen29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644.
dc.relation.referencesen30. Glasel J., Biotechniques, 1995, 8, 62.
dc.relation.referencesen31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al., Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707
dc.relation.referencesen32. Lu X., Zhu K., ZhangM. et al., J. Biochem. Biophys. Met., 2002, 52, 189.
dc.relation.referencesen33. AslanogluM., Ayne G., Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5
dc.relation.referencesen34. Zhao G., Zhu J., Zhang J. et al., Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5
dc.relation.referencesen35. Atkins P., Physical Chemistry. Oxford University Press, Oxford 1986, 263-265.
dc.relation.referencesen36. Xu Z., Bai G., Dong C., Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023
dc.relation.referencesen37. Ye H., Cande C., Stephanou N., Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836
dc.relation.referencesen38. Li D., Huang F., Chen G. et al., J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008
dc.relation.referencesen39. Brett C., Brett A., Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276.
dc.relation.referencesen40. NieM., Wang Y., Li H., Pol. J. Chem., 1997, 71, 816.
dc.relation.referencesen41. FrischM., Trucks G., Schlegel H. et al., Gaussian 09. Gaussian Inc., Wallingford CT, 2009.
dc.relation.referencesen42. Becke A., J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913
dc.relation.referencesen43. Miehlich B., Savin A., Stoll H. et al., Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
dc.relation.referencesen44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256
dc.relation.referencesen45. Berman H., Westbrook J., Feng Z. et al., Nucl. Acids Res., 2000, 28, 235.
dc.relation.referencesen46. Lanez T., Benaicha H., Lanez E. et al., J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811
dc.relation.urihttps://doi.org/10.1038/1681039b0
dc.relation.urihttps://doi.org/10.1039/JR9520000632
dc.relation.urihttps://doi.org/10.1021/ja01128a527
dc.relation.urihttps://doi.org/10.1016/j.jorganchem.2013.08.043
dc.relation.urihttps://doi.org/10.1039/C2DT31570J
dc.relation.urihttps://doi.org/10.1039/C1NJ20172G
dc.relation.urihttps://doi.org/
dc.relation.urihttps://doi.org/10.1248/cpb.55.796
dc.relation.urihttps://doi.org/10.1016/S0960-894X(00)00120-7
dc.relation.urihttps://doi.org/10.4172/1948-5956.1000154
dc.relation.urihttps://doi.org/10.1016/j.corsci.2007.09.002
dc.relation.urihttps://doi.org/10.1016/j.jorganchem.2014.05.038
dc.relation.urihttps://doi.org/10.1021/cr0101510
dc.relation.urihttps://doi.org/10.1002/aoc.1202
dc.relation.urihttps://doi.org/10.1016/S0020-1693(00)83359-9
dc.relation.urihttps://doi.org/10.1021/om00102a023
dc.relation.urihttps://doi.org/10.1016/S1387-1609(00)00118-3
dc.relation.urihttps://doi.org/10.1039/A905168F
dc.relation.urihttps://doi.org/10.1039/DT9960004115
dc.relation.urihttp://dx.doi.org/10.1007/s00044-012-0311-8
dc.relation.urihttps://doi.org/10.1071/CH12570
dc.relation.urihttps://doi.org/10.1016/j.jpba.2012.06.005
dc.relation.urihttps://doi.org/10.1016/j.jelechem.2014.01.007
dc.relation.urihttps://doi.org/10.1039/JR9580000656
dc.relation.urihttps://doi.org/10.1002/aoc.1362
dc.relation.urihttps://doi.org/10.1006/bbrc.2000.2707
dc.relation.urihttps://doi.org/10.1007/s00216-004-2797-5
dc.relation.urihttps://doi.org/10.1016/S0003-2670(99)00292-5
dc.relation.urihttps://doi.org/10.1016/j.bmc.2005.06.023
dc.relation.urihttps://doi.org/10.1038/nsb836
dc.relation.urihttps://doi.org/10.1016/j.jinorgbio.2009.12.008
dc.relation.urihttps://doi.org/10.1063/1.464913
dc.relation.urihttps://doi.org/10.1016/0009-2614(89)87234-3
dc.relation.urihttps://doi.org/10.1002/jcc.21256
dc.relation.urihttps://doi.org/10.1080/17415993.2017.1391811
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Lanez E., Bechki L., Lanez T., 2019
dc.subjectДНК
dc.subjectенергія вільного зв’язування
dc.subjectAutoDock
dc.subjectрозмір ділянки зв’язування
dc.subjectкоефіцієнт дифузії
dc.subjectDNA
dc.subjectfree binding energy
dc.subjectAutoDock
dc.subjectsize of binding site
dc.subjectdiffusion coefficient
dc.titleComputational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine
dc.title.alternativeОбчислювальний молекулярний докінг, волтаметричні та спектроскопічні дослідження взаємодії ДНК з 9N-(ферроценілметил)аденіном
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n1_Lanez_E-Computational_molecular_docking_11-17.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n1_Lanez_E-Computational_molecular_docking_11-17__COVER.png
Size:
522.42 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.97 KB
Format:
Plain Text
Description: