The Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles

dc.citation.epage295
dc.citation.issue3
dc.citation.spage288
dc.contributor.affiliationUniversity of Nigeria
dc.contributor.authorOnoabedje, Efeturi A.
dc.contributor.authorOkafor, Sunday N.
dc.contributor.authorAkpomie, Kovo G.
dc.contributor.authorOkoro, Uchechukwu C.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T13:09:28Z
dc.date.available2020-03-02T13:09:28Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractСинтезовано ряд нових 3-амінопохідних 3-хлор-10Н-піридо[3,2-b][1,4]бензоксазину та 3-хлор-10H- піридо[3,2-b][1,4]бензотіазину та визначено їх протипухлинну активність. Синтезовані сполуки проаналізовані УФ-, 1H ЯМР-спектроскопією, спектроскопією Фур’є та елемент- ним аналізом. На основі фізико-хімічних властивостей за методом in silico виявлено, що проміжні продукти 3-хлор-10Н- піридо[3,2-b][1,4]бензоксазину і 3-хлор-10H-піридо[3,2-b] [1,4]бензотіазину, та їх карбоксиамідні похідні не порушують правила Ліпінського. За допомогою молекулярного докінгу показано, що синтезовані сполуки непогано взаємодіють з ре- цепторами раку. Визначено, що найвищу протипухлинну активність має 1,3-ді-10H-піридо[3,2-b][1,4]бензотіазин-3-ілсечовина.
dc.description.abstractThe synthesis and anticancer activity of a series of new 3-amido derivatives of 3-chloro-10Hpyrido[ 3,2-b][1,4]benzoxazine and 3-chloro-10H-pyrido [3,2-b][1,4]benzothiazine is presented. The synthesized structures were characterized by UV-visible, FT-IR, 1H NMR spectroscopy and elemental analytical data. The in silico physicochemical properties disclosed that neither 3-chloro-10H-pyrido[3,2-b][1,4]benzoxazine and 3-chloro- 10H-pyrido[3,2-b][1,4]benzothiazine intermediates nor their carboxyamido derivatives violate Lipinski’s rule of five. In addition, molecular docking studies showed that they exhibited good interaction with cancer receptors. 1,3-di-10H-Pyrido[3,2-b][1,4]benzothiazin-3-ylurea which showed a significant interaction with all the employed receptors possessed the highest anticancer activity.
dc.format.extent288-295
dc.format.pages8
dc.identifier.citationThe Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles / Efeturi A. Onoabedje, Sunday N. Okafor, Kovo G. Akpomie, Uchechukwu C. Okoro // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 288–295.
dc.identifier.citationenThe Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles / Efeturi A. Onoabedje, Sunday N. Okafor, Kovo G. Akpomie, Uchechukwu C. Okoro // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 288–295.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46489
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (13), 2019
dc.relation.references1. Pluta K., Morak-Mlodawska B., JelenM.: Eur. J. Med. Chem., 2011, 46, 3180. https://doi.org/10.1016/j.ejmech.2011.05.013
dc.relation.references2. Aaron J., Gaye Seye M., Trajkovska S. et al.: Top. Heterocycl. Chem., 2009, 16, 202. https://doi.org/10.1007/7081_2008_125
dc.relation.references3. Motohashi N., Sakagami H., Kamata K., Yamamoto Y.: Anticancer Res., 1991, 11, 1933.
dc.relation.references4. Pluta K., JelenM.,Morak-Mlodawska B. et al.: Pharmacology Rep., 2010, 62, 319. https://doi.org/10.1016/S1734-1140(10)70272-3
dc.relation.references5. Miyano-Kurosaki N, Ikegami K., Kurosaki K. et al.: J. Pharmacol. Sci., 2009, 110, 87. https://doi.org/10.1254/jphs.08347FP
dc.relation.references6. Thimmaiah K., Horton K., Seshadri R. et al.: J. Med. Chem., 1992, 35, 3358. https://doi.org/10.1021/jm00096a009
dc.relation.references7. Shimizu S., Suzuki M., Tomoda A. et al.: Tohoku J. Exp. Med., 2004, 203, 47.
dc.relation.references8. Kato S., Shirato K., Imaizumi K. et al.:Oncol. Rep., 2006, 15, 843.
dc.relation.references9. Azuine M., Tokuda H., Takayasu J. et al.: Pharmacol. Res., 2004, 49, 161. https://doi.org/10.1016/j.phrs.2003.07.014
dc.relation.references10. Onoabedje E., Ibezim A., Okafor S. et al.: PLoS ONE, 2016, 11, e0163467. https://doi.org/10.1371/journal.pone.0163467
dc.relation.references11. Ghorab M., Alsaid M., Al-Dosary M. et al.: Chem. Cent. J., 2016, 10, 1. https://doi.org/10.1186/s13065-016-0148-1
dc.relation.references12. UllahM.: Asian Pacific J. Cancer Prev., 2008, 9, 1.
dc.relation.references13. Fors B., Dooleweerdt K., Zeng Q. et al.: Tetrahedron, 2009, 65, 6576. https://doi.org/10.1016/j.tet.2009.04.096
dc.relation.references14. Brett P., Philip K., Strieter F. et al.: Org. Lett., 2008, 10, 3505. https://doi.org/10.1021/ol801285g
dc.relation.references15. Yin J., Buchwald S.: Org. Lett., 2000, 2, 1101. https://doi.org/10.1021/ol005654r
dc.relation.references16. Buchwald S., Yin J.: Tetrahedron, 2009, 65, 6576. https://doi.org/10.1016/j.tet.2009.04.096
dc.relation.references17. Agbo S., Anoh V., Okoro U.: J. Applicable Chem., 2014, 3, 2526.
dc.relation.references18. Shima F., Ijiri Y., Muraoka S. et al.: J. Biol. Chem., 2010, 285, 22696. https://doi.org/10.1074/jbc.M110.125161
dc.relation.references19. Colombo R., Caldarelli M., Mennecozzi M. et al.: J. Moll. Cancer Res., 2010, 70, 10255. https://doi.org/10.1158/0008-5472.CAN-10-2101
dc.relation.references20. Pai E., Krengel U., Petsko G. et al.: EMBO J., 1990, 9, 2351. https://doi.org/10.1002/j.1460-2075.1990.tb07409.x
dc.relation.references21. Matias P., CarrondoM., Coelho R. et al. J. Med. Chem., 2002, 45, 1439. https://doi.org/10.1021/jm011072j
dc.relation.references22. Dong Q., Dougan D., Gong X. et al.: Bioorg. Med. Chem. Lett., 2011, 21, 1315. https://doi.org/10.1016/j.bmcl.2011.01.071
dc.relation.references23. Colombo R., Caldarelli M., Mennecozzi M.: Cancer Res., 2010, 70, 10255. https://doi.org/10.1158/0008-5472.CAN-10-2101
dc.relation.references24. Rajalingam K., Schreck R., Rapp U., Albert S.: Biochim. Biophys. Acta, 2007, 1773, 1177. https://doi.org/10.1016/j.bbamcr.2007.01.012
dc.relation.references25. Dassault Systèmes BIOVIA, Discovery StudioModeling Environment, Release 2017, San Diego: Dassault Systèmes, 2016.
dc.relation.references26. ACD/ChemSketch (Freeware), version 15.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2015.
dc.relation.references27. Boyle N., BanckM., James C. et al.: J. Chemoinform., 2011, 3, 33. https://doi.org/10.1186/1758-2946-3-33
dc.relation.references28. Morris G., Huey R., LindstromW. et al.: J. Comput. Chem., 2009, 16, 2785. https://doi.org/10.1002/jcc.21256
dc.relation.references29. Trott O., Olson A.: J. Comput. Chem., 2010, 31, 455. https://doi.org/10.1002/jcc.21334
dc.relation.references30. The PyMOLMolecular Graphics System, Version 1.8 Schrödinger, LLC.
dc.relation.references31. Okafor C., Castle R., Wise Jr. D.: J. Heterocyclic Chem., 1983, 20, 1047. https://doi.org/10.1002/jhet.5570200441
dc.relation.references32. Okafor C., Uche I., Akpanisi L.: J. Heterocyclic Chem., 1981, 18, 1589. https://doi.org/10.1002/jhet.5570180820
dc.relation.references33. Veber D., Stephen R., Hung-Yuan C. et al.: J. Med. Chem., 2002, 45, 2615. https://doi.org/10.1021/jm020017n
dc.relation.referencesen1. Pluta K., Morak-Mlodawska B., JelenM., Eur. J. Med. Chem., 2011, 46, 3180. https://doi.org/10.1016/j.ejmech.2011.05.013
dc.relation.referencesen2. Aaron J., Gaye Seye M., Trajkovska S. et al., Top. Heterocycl. Chem., 2009, 16, 202. https://doi.org/10.1007/7081_2008_125
dc.relation.referencesen3. Motohashi N., Sakagami H., Kamata K., Yamamoto Y., Anticancer Res., 1991, 11, 1933.
dc.relation.referencesen4. Pluta K., JelenM.,Morak-Mlodawska B. et al., Pharmacology Rep., 2010, 62, 319. https://doi.org/10.1016/S1734-1140(10)70272-3
dc.relation.referencesen5. Miyano-Kurosaki N, Ikegami K., Kurosaki K. et al., J. Pharmacol. Sci., 2009, 110, 87. https://doi.org/10.1254/jphs.08347FP
dc.relation.referencesen6. Thimmaiah K., Horton K., Seshadri R. et al., J. Med. Chem., 1992, 35, 3358. https://doi.org/10.1021/jm00096a009
dc.relation.referencesen7. Shimizu S., Suzuki M., Tomoda A. et al., Tohoku J. Exp. Med., 2004, 203, 47.
dc.relation.referencesen8. Kato S., Shirato K., Imaizumi K. et al.:Oncol. Rep., 2006, 15, 843.
dc.relation.referencesen9. Azuine M., Tokuda H., Takayasu J. et al., Pharmacol. Res., 2004, 49, 161. https://doi.org/10.1016/j.phrs.2003.07.014
dc.relation.referencesen10. Onoabedje E., Ibezim A., Okafor S. et al., PLoS ONE, 2016, 11, e0163467. https://doi.org/10.1371/journal.pone.0163467
dc.relation.referencesen11. Ghorab M., Alsaid M., Al-Dosary M. et al., Chem. Cent. J., 2016, 10, 1. https://doi.org/10.1186/s13065-016-0148-1
dc.relation.referencesen12. UllahM., Asian Pacific J. Cancer Prev., 2008, 9, 1.
dc.relation.referencesen13. Fors B., Dooleweerdt K., Zeng Q. et al., Tetrahedron, 2009, 65, 6576. https://doi.org/10.1016/j.tet.2009.04.096
dc.relation.referencesen14. Brett P., Philip K., Strieter F. et al., Org. Lett., 2008, 10, 3505. https://doi.org/10.1021/ol801285g
dc.relation.referencesen15. Yin J., Buchwald S., Org. Lett., 2000, 2, 1101. https://doi.org/10.1021/ol005654r
dc.relation.referencesen16. Buchwald S., Yin J., Tetrahedron, 2009, 65, 6576. https://doi.org/10.1016/j.tet.2009.04.096
dc.relation.referencesen17. Agbo S., Anoh V., Okoro U., J. Applicable Chem., 2014, 3, 2526.
dc.relation.referencesen18. Shima F., Ijiri Y., Muraoka S. et al., J. Biol. Chem., 2010, 285, 22696. https://doi.org/10.1074/jbc.M110.125161
dc.relation.referencesen19. Colombo R., Caldarelli M., Mennecozzi M. et al., J. Moll. Cancer Res., 2010, 70, 10255. https://doi.org/10.1158/0008-5472.CAN-10-2101
dc.relation.referencesen20. Pai E., Krengel U., Petsko G. et al., EMBO J., 1990, 9, 2351. https://doi.org/10.1002/j.1460-2075.1990.tb07409.x
dc.relation.referencesen21. Matias P., CarrondoM., Coelho R. et al. J. Med. Chem., 2002, 45, 1439. https://doi.org/10.1021/jm011072j
dc.relation.referencesen22. Dong Q., Dougan D., Gong X. et al., Bioorg. Med. Chem. Lett., 2011, 21, 1315. https://doi.org/10.1016/j.bmcl.2011.01.071
dc.relation.referencesen23. Colombo R., Caldarelli M., Mennecozzi M., Cancer Res., 2010, 70, 10255. https://doi.org/10.1158/0008-5472.CAN-10-2101
dc.relation.referencesen24. Rajalingam K., Schreck R., Rapp U., Albert S., Biochim. Biophys. Acta, 2007, 1773, 1177. https://doi.org/10.1016/j.bbamcr.2007.01.012
dc.relation.referencesen25. Dassault Systèmes BIOVIA, Discovery StudioModeling Environment, Release 2017, San Diego: Dassault Systèmes, 2016.
dc.relation.referencesen26. ACD/ChemSketch (Freeware), version 15.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2015.
dc.relation.referencesen27. Boyle N., BanckM., James C. et al., J. Chemoinform., 2011, 3, 33. https://doi.org/10.1186/1758-2946-3-33
dc.relation.referencesen28. Morris G., Huey R., LindstromW. et al., J. Comput. Chem., 2009, 16, 2785. https://doi.org/10.1002/jcc.21256
dc.relation.referencesen29. Trott O., Olson A., J. Comput. Chem., 2010, 31, 455. https://doi.org/10.1002/jcc.21334
dc.relation.referencesen30. The PyMOLMolecular Graphics System, Version 1.8 Schrödinger, LLC.
dc.relation.referencesen31. Okafor C., Castle R., Wise Jr. D., J. Heterocyclic Chem., 1983, 20, 1047. https://doi.org/10.1002/jhet.5570200441
dc.relation.referencesen32. Okafor C., Uche I., Akpanisi L., J. Heterocyclic Chem., 1981, 18, 1589. https://doi.org/10.1002/jhet.5570180820
dc.relation.referencesen33. Veber D., Stephen R., Hung-Yuan C. et al., J. Med. Chem., 2002, 45, 2615. https://doi.org/10.1021/jm020017n
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2011.05.013
dc.relation.urihttps://doi.org/10.1007/7081_2008_125
dc.relation.urihttps://doi.org/10.1016/S1734-1140(10)70272-3
dc.relation.urihttps://doi.org/10.1254/jphs.08347FP
dc.relation.urihttps://doi.org/10.1021/jm00096a009
dc.relation.urihttps://doi.org/10.1016/j.phrs.2003.07.014
dc.relation.urihttps://doi.org/10.1371/journal.pone.0163467
dc.relation.urihttps://doi.org/10.1186/s13065-016-0148-1
dc.relation.urihttps://doi.org/10.1016/j.tet.2009.04.096
dc.relation.urihttps://doi.org/10.1021/ol801285g
dc.relation.urihttps://doi.org/10.1021/ol005654r
dc.relation.urihttps://doi.org/10.1074/jbc.M110.125161
dc.relation.urihttps://doi.org/10.1158/0008-5472.CAN-10-2101
dc.relation.urihttps://doi.org/10.1002/j.1460-2075.1990.tb07409.x
dc.relation.urihttps://doi.org/10.1021/jm011072j
dc.relation.urihttps://doi.org/10.1016/j.bmcl.2011.01.071
dc.relation.urihttps://doi.org/10.1016/j.bbamcr.2007.01.012
dc.relation.urihttps://doi.org/10.1186/1758-2946-3-33
dc.relation.urihttps://doi.org/10.1002/jcc.21256
dc.relation.urihttps://doi.org/10.1002/jcc.21334
dc.relation.urihttps://doi.org/10.1002/jhet.5570200441
dc.relation.urihttps://doi.org/10.1002/jhet.5570180820
dc.relation.urihttps://doi.org/10.1021/jm020017n
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Onoabedje E., Okafor S., Akpomie K., Okoro U., 2019
dc.subjectсинтез
dc.subjectфеноксазин
dc.subjectфенотіазин
dc.subjectкарбоксиамід
dc.subjectпротипухлинні засоби
dc.subjectдокінг
dc.subjectsynthesis
dc.subjectphenoxazine
dc.subjectphenothiazine
dc.subjectcarboxyamide
dc.subjectanticancer
dc.subjectdocking
dc.titleThe Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles
dc.title.alternativeСинтез і теоретичні протипухлинні дослідження деяких нових моноаза-10Н-фенотиазинових та 10Н- феноксазинових гетероциклів
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n3_Onoabedje_E_A-The_Synthesis_and_Theoretical_288-295.pdf
Size:
533.33 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n3_Onoabedje_E_A-The_Synthesis_and_Theoretical_288-295__COVER.png
Size:
519.11 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3 KB
Format:
Plain Text
Description: