Investigations to digitizing of the gyro oscillation swing by a line camera

dc.citation.epage53
dc.citation.issue2(38)
dc.citation.journalTitleСучасні досягнення геодезичної науки та виробництва
dc.citation.spage45
dc.contributor.affiliationВища школа Нойбранденбурга
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationNeubrandenburg University of Applied Sciences
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorХегер, В.
dc.contributor.authorТревого, І.
dc.contributor.authorЛопатін, Я.
dc.contributor.authorHeger, W.
dc.contributor.authorTrevoho, I.
dc.contributor.authorLopatin, Y.
dc.coverage.placenameЛьвів
dc.date.accessioned2020-02-21T10:11:16Z
dc.date.available2020-02-21T10:11:16Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractThe purpose of this work is to develop a technology for an automatic measurement process for determining the azimuth by the “Gyromax AK-2M” gyroscope. The accuracy of determining the principal values should be higher than by manual procedure. A method for digitizing the gyro oscillations using a camera with a linear sensor and programming code is proposed in this work. The working possibility of the line camera from Coptonix™ company was investigated, as well as the possibility of its connection to a single board computer Raspberry Pi 3B for data transmission and processing. The possibility of using the Python 3.0 programming language for these tasks was tested. Methodology. To implement this project, an integrated approach was used, using devices such as a camera with a linear sensor, a single board computer and facility, that simulates gyroscope oscillations. This research includes investigations in digitizing of data, computing the azimuth values and automatizing these processes. For automatized data computation were used the same two methods as in the regular manual measurements – Turning point method (TPM) and Pass-Through method (PTM). Results. The result of this work is an automated oscillation measurement system, that can be applied in gyroscopes. The system includes developed software, which connects the user to the linear camera and processing computer, records the necessary data, transfers them to the client-computer and calculates the necessary values. For the convenience of using the program by other users, the program is provided with a graphical user interface. The result of the program is a file with the extension XML, which contains data about measurements. Scientific novelty and practical significance. The new method of digitizing the gyroscope oscillations is proposed in this work. Application of a line camera and a single board computer for the digitization of measurements opens a lot of possibilities for improving the automation processes of the geodetic devices, which could increase the accuracy of measurement and decrease its duration. By developing this method of digitization, it is possible to start production of an improved version of gyro add-on GYROMAX AK-2M.
dc.format.extent45-53
dc.format.pages9
dc.identifier.citationHeger W. Investigations to digitizing of the gyro oscillation swing by a line camera / W. Heger, I. Trevoho, Y. Lopatin // Сучасні досягнення геодезичної науки та виробництва. — Львів : Видавництво Львівської політехніки, 2019. — № 2(38). — С. 45–53.
dc.identifier.citationenHeger W. Investigations to digitizing of the gyro oscillation swing by a line camera / W. Heger, I. Trevoho, Y. Lopatin // Modern achievements of geodesic science and industry. — Vydavnytstvo Lvivskoi politekhniky, 2019. — No 2(38). — P. 45–53.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45929
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofСучасні досягнення геодезичної науки та виробництва, 2(38), 2019
dc.relation.ispartofModern achievements of geodesic science and industry, 2(38), 2019
dc.relation.referencesCaspary W. F. (1987). Gyroscope technology, status and trends. Applied Geodesy. Lecture Notes in Earth
dc.relation.referencesSciences, vol. 12. Springer, Berlin, Heidelberg.
dc.relation.referencesCaspary W. F., Schwintzer P. (1981). An extension of
dc.relation.referencesChronometric Gyroscope Observation Methods. The
dc.relation.referencesCanadian Surveyor (35), pp. 364–372.
dc.relation.referencesCoptonix Line Camera. [Electronic resource]. Access
dc.relation.referencesmode https://www.coptonix.com/_en/html/usblinecamera.html
dc.relation.referencesvon Fabeck W. (1980) Kreiselgeräte. Vogel-Verlag, Würzburg
dc.relation.referencesGolovanov V. A. (2004) Giroskopicheskoye
dc.relation.referencesoriyentirovanye: Uchebnyy posobnik. [Gyroscopic
dc.relation.referencesorientation. Training manual] St. Petersburg Mining
dc.relation.referencesUniversity, St. Petersburg, 92 p.
dc.relation.referencesKovtun V., Heger W., Trevoho I., Chaplynska L. (2010).
dc.relation.referencesGeoprofile, : 4, 34–40.
dc.relation.referencesLinear Image Sensors. [Electronic resource].
dc.relation.referencesAccess mode: https://toshiba.semiconstorage.com/eu/product/sensor/linear-sensor.html
dc.relation.referencesPyQt application framework. [Electronic resource].
dc.relation.referencesAccess mode: (https://riverbankcomputing.com/software/pyqt/intro).
dc.relation.referencesSchwender H. R. (1964). Beobachtungsmethoden für
dc.relation.referencesAufsatzkreisel. Schweizerische Zeitschrift für
dc.relation.referencesVermessung, Kulturtechnik und Photogrammetrie (62), pp. 365–375.
dc.relation.referencesShestov S. (1989). Giroskop na nebe i zemle. [Gyroscope in heaven and on Earth]. Moscow, 70 p.
dc.relation.referencesThomas T. L. (1982). The Six Methods of Finding North Using a Suspended Gyroscope. Survey Review (26), pp. 225–235.
dc.relation.referencesVanicek P. (1972). Dynamical Aspects of the Suspended
dc.relation.referencesGyrocompass. The Canadian Surveyor (26), pp. 77–83.
dc.relation.referencesVoronkov N., Ashymov N. (1980). Giroskopicheskoye oriyentirovaniye [Gyroscopic orientation]. Moscow: Nedra, 224 p.
dc.relation.referencesZiegler H. (1962). Kreiselprobleme / Gyrodynamics: Symposion Celerina, 20. Bis 23.
dc.relation.referencesenCaspary W. F. (1987). Gyroscope technology, status and trends. Applied Geodesy. Lecture Notes in Earth Sciences, vol. 12. Springer, Berlin, Heidelberg.
dc.relation.referencesenCaspary W. F., Schwintzer P. (1981). An extension of Chronometrie Gyroscope Observation Methods. The Canadian Surveyor (35), pp. 364-372.
dc.relation.referencesenCoptonix Line Camera. [Electronic resource]. Access mode https://www.coptonix.com/_en/html/usblinecamera.html
dc.relation.referencesenvon Fabeck W. (1980) Kreiselgeräte. Vogel-Verlag, Würzburg
dc.relation.referencesenGolovanov V. A. (2004) Giroskopicheskoye oriyentirovanye: Uchebnyy posobnik. [Gyroscopic orientation. Training manual] St. Petersburg Mining University, St. Petersburg, 92 p.
dc.relation.referencesenKovtun V., Heger W., Trevoho I., Chaplynska L. (2010). Geoprofile, № 4, pp. 34-40.
dc.relation.referencesenLinear Image Sensors. [Electronic resource]. Access mode: https://toshiba.semicon-storage.com/eu/product/sensor/linear-sensor.html
dc.relation.referencesenPyQt application framework. [Electronic resource]. Access mode: (https://riverbankcomputing.com/software/pyqt/intro).
dc.relation.referencesenSchwender H. R. (1964). Beobachtungsmethoden für Aufsatzkreisel. Schweizerische Zeitschrift für Vermessung, Kulturtechnik und Photogrammetrie (62), pp. 365-375.
dc.relation.referencesenShestov S. (1989). Giroskop na nebe i zemle. [Gyroscope in heaven and on Earth]. Moscow, 70 p.
dc.relation.referencesenThomas T. L. (1982). The Six Methods of Finding North Using a Suspended Gyroscope. Survey Review (26), pp. 225-235.
dc.relation.referencesenVanicek P. (1972). Dynamical Aspects of the Suspended Gyrocompass. The Canadian Surveyor (26), pp. 77-83.
dc.relation.referencesenVoronkov N., Ashymov N. (1980). Giroskopicheskoye ori yentirovaniye [Gyroscopic orientation]. Moscow: Nedra, 224 p.
dc.relation.referencesenZiegler H. (1962). Kreiselprobleme / Gyrodynamics: Symposion Celerina, 20. Bis 23.
dc.relation.urihttps://www.coptonix.com/_en/html/usblinecamera.html
dc.relation.urihttps://toshiba.semiconstorage.com/eu/product/sensor/linear-sensor.html
dc.relation.urihttps://riverbankcomputing.com/software/pyqt/intro
dc.relation.urihttps://toshiba.semicon-storage.com/eu/product/sensor/linear-sensor.html
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder©Західне геодезичне товариство, 2019
dc.subjectгіроскоп
dc.subjectлінійна камера
dc.subjectоцифрування
dc.subjectавтоматизація вимірювань
dc.subjectgyroscope
dc.subjectline camera
dc.subjectdigitizing
dc.subjectautomation of measurements
dc.subject.udc528.022.11
dc.titleInvestigations to digitizing of the gyro oscillation swing by a line camera
dc.title.alternativeДослідження оцифрування коливань гіроскопа за допомогою лінійної камери
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019n2_38__Heger_W-Investigations_to_digitizing_45-53.pdf
Size:
995.73 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019n2_38__Heger_W-Investigations_to_digitizing_45-53__COVER.png
Size:
1.43 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.01 KB
Format:
Plain Text
Description: