On approach to determine the internal potential and gravitational energy of ellipsoid

dc.citation.epage367
dc.citation.issue3
dc.citation.spage359
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorФис, М. М.
dc.contributor.authorБридун, А. М.
dc.contributor.authorЮрків, М. І.
dc.contributor.authorFys, M. M.
dc.contributor.authorBrydun, A. M.
dc.contributor.authorYurkiv, M. I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-25T07:19:01Z
dc.date.available2023-10-25T07:19:01Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractВстановлено формули для обчислення потенціалу тіл, поверхня яких є куля або еліпсоїд, а функція розподілу має спеціальний вигляд: кусково-неперервна одновимірна функція або тривимірний розподіл мас. Для кожного з цих випадків виведені формули для обчислення як зовнішнього, так і внутрішнього потенціалів. З їх допомогою далі подаються вирази для обчислення потенціальної (гравітаційної) енергії мас таких тіл та їх відповідних розподілів. Для тіл кульової форми подаються точні та наближені співвідношення визначення енергії, що дає можливість порівняння ітераційного процесу та можливість його застосування до еліпсоїда. Описана методика апробована на конкретному числовому прикладі.
dc.description.abstractFormulas are derived for the calculation of the potential of bodies, which surface is a sphere or an ellipsoid, and the distribution function has a special form: a piecewise continuous onedimensional function and a three-dimensional mass distribution. For each of these cases, formulas to calculate both external and internal potentials are derived. With their help, further the expressions are given for calculation of the potential (gravitational) energy of the masses of such bodies and their corresponding distributions. For spherical bodies, the exact and approximate relations for determining the energy are provided, which makes it possible to compare the iterative process and the possibility of its application to an ellipsoid. The described technique has been tested by a specific numerical example.
dc.format.extent359-367
dc.format.pages9
dc.identifier.citationFys M. M. On approach to determine the internal potential and gravitational energy of ellipsoid / M. M. Fys, A. M. Brydun, M. I. Yurkiv // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 359–367.
dc.identifier.citationenFys M. M. On approach to determine the internal potential and gravitational energy of ellipsoid / M. M. Fys, A. M. Brydun, M. I. Yurkiv // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 359–367.
dc.identifier.doidoi.org/10.23939/mmc2021.03.359
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60398
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 3 (8), 2021
dc.relation.references[1] Aleksandrova A. A. Plasma inhomogeneities in the magnetohydrodynamic interpretation. Information processing systems. 9, 122–127 (2007).
dc.relation.references[2] Chandrasekhar S. Ellipsoidal balance figures. Moscow, Mir (1973), (in Russian).
dc.relation.references[3] Kuznetsov V. V. The principle of minimizing the gravitational energy of the Earth and the mechanisms of its implementation. Bulletin of the Earth Sciences Division of the Russian Academy of Sciences. Electronic scientific information magazine. 1 (23), 1–27 (2005).
dc.relation.references[4] Newton I. Mathematical principles of natural philosophy. In the book A. N. Krylova. Publishing House of the Academy of Sciences of the USSR. 7 (1936).
dc.relation.references[5] Fys M. M, Brydun А. M., Yurkiv М. I. Researching the influence of the mass distribution inhomogeneity of the ellipsoidal planet’s interior on its stokes constants. Geodynamics. 26 (1), 17–27 (2019).
dc.relation.references[6] Moritz G. Earth figure: Theoretical geodesy and the internal structure of the Earth. Kiev (1994), (in Russian).
dc.relation.references[7] Kondratiev B. P. The theory of potential. New methods and tasks with solutions. Moscow, Mir (2007), (in Russian).
dc.relation.references[8] Meshcheryakov G. A. Problems of the theory of potential and generalized Earth. Moscow, Nauka (1991), (in Russian).
dc.relation.references[9] Fis M. M. On average convergence of biorthogonal series inside an ellipsoid. Differential equations and their applications. 172, 131–132 (1983).
dc.relation.references[10] Fys M. M. The use of biorthogonal decompositions to calculate the potential of an ellipsoid. Geodesy, cartography, and aerial photography. 40, 114–116 (1984).
dc.relation.references[11] Tikhonov A. N., Samarskii A. A. Equations of mathematical physics. Moscow, Nauka (1972), (in Russian).
dc.relation.references[12] Muratov R. Z. Potentials of an ellipsoid. Moscow, Atomizdat (1976), (in Russian).
dc.relation.references[13] Fys M., Zayats O., Fot R., Volos V. About one method of recognizing the potential of a heterogeneous planet. Successfully reaching geodesic science and technology. 10 (1), 236–239 (2005).
dc.relation.references[14] Fys M. The distribution of the gravitational field of the trivial and planetary planet from the orthogonal to one class of non-harmonious functions. Geodesy, Cartography, and Aerophotognism. 74, 34–37 (2011)
dc.relation.references[15] Fys M. M., Nikulishin V. I., Ozimblovsky R. M. Victoria polynomials Legendre for approximation of the same rozpodiliv gustini mas planets and doslizhennya їх zbizhnosti. Geodesy, Cartography and Aerophotognism. 73, 3–6 (2010).
dc.relation.references[16] Sege G. Orthogonal polynomials. Moscow, Fizmatgiz (1962), (in Russian).
dc.relation.references[17] Marchenko A. N. Zayats A. S. Estimation of the potential gravitational energy of the Earth based on reference density models. Geodynamics. 7 (1), 5–24 (2008).
dc.relation.references[18] Dzewonski A., Anderson D. Preliminary reference Earth model. Physics of the Earth and Planet Inter. 25, 297–356 (1981).
dc.relation.references[19] Fys M., Nikulishin V. Analysis of the energy efficiency of land on the internal structure of the applied model of PREM. Geodynamics. 10 (1), 17–21 (2011).
dc.relation.referencesen[1] Aleksandrova A. A. Plasma inhomogeneities in the magnetohydrodynamic interpretation. Information processing systems. 9, 122–127 (2007).
dc.relation.referencesen[2] Chandrasekhar S. Ellipsoidal balance figures. Moscow, Mir (1973), (in Russian).
dc.relation.referencesen[3] Kuznetsov V. V. The principle of minimizing the gravitational energy of the Earth and the mechanisms of its implementation. Bulletin of the Earth Sciences Division of the Russian Academy of Sciences. Electronic scientific information magazine. 1 (23), 1–27 (2005).
dc.relation.referencesen[4] Newton I. Mathematical principles of natural philosophy. In the book A. N. Krylova. Publishing House of the Academy of Sciences of the USSR. 7 (1936).
dc.relation.referencesen[5] Fys M. M, Brydun A. M., Yurkiv M. I. Researching the influence of the mass distribution inhomogeneity of the ellipsoidal planet’s interior on its stokes constants. Geodynamics. 26 (1), 17–27 (2019).
dc.relation.referencesen[6] Moritz G. Earth figure: Theoretical geodesy and the internal structure of the Earth. Kiev (1994), (in Russian).
dc.relation.referencesen[7] Kondratiev B. P. The theory of potential. New methods and tasks with solutions. Moscow, Mir (2007), (in Russian).
dc.relation.referencesen[8] Meshcheryakov G. A. Problems of the theory of potential and generalized Earth. Moscow, Nauka (1991), (in Russian).
dc.relation.referencesen[9] Fis M. M. On average convergence of biorthogonal series inside an ellipsoid. Differential equations and their applications. 172, 131–132 (1983).
dc.relation.referencesen[10] Fys M. M. The use of biorthogonal decompositions to calculate the potential of an ellipsoid. Geodesy, cartography, and aerial photography. 40, 114–116 (1984).
dc.relation.referencesen[11] Tikhonov A. N., Samarskii A. A. Equations of mathematical physics. Moscow, Nauka (1972), (in Russian).
dc.relation.referencesen[12] Muratov R. Z. Potentials of an ellipsoid. Moscow, Atomizdat (1976), (in Russian).
dc.relation.referencesen[13] Fys M., Zayats O., Fot R., Volos V. About one method of recognizing the potential of a heterogeneous planet. Successfully reaching geodesic science and technology. 10 (1), 236–239 (2005).
dc.relation.referencesen[14] Fys M. The distribution of the gravitational field of the trivial and planetary planet from the orthogonal to one class of non-harmonious functions. Geodesy, Cartography, and Aerophotognism. 74, 34–37 (2011)
dc.relation.referencesen[15] Fys M. M., Nikulishin V. I., Ozimblovsky R. M. Victoria polynomials Legendre for approximation of the same rozpodiliv gustini mas planets and doslizhennya yikh zbizhnosti. Geodesy, Cartography and Aerophotognism. 73, 3–6 (2010).
dc.relation.referencesen[16] Sege G. Orthogonal polynomials. Moscow, Fizmatgiz (1962), (in Russian).
dc.relation.referencesen[17] Marchenko A. N. Zayats A. S. Estimation of the potential gravitational energy of the Earth based on reference density models. Geodynamics. 7 (1), 5–24 (2008).
dc.relation.referencesen[18] Dzewonski A., Anderson D. Preliminary reference Earth model. Physics of the Earth and Planet Inter. 25, 297–356 (1981).
dc.relation.referencesen[19] Fys M., Nikulishin V. Analysis of the energy efficiency of land on the internal structure of the applied model of PREM. Geodynamics. 10 (1), 17–21 (2011).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectвнутрішній потенціал
dc.subjectгравітаційна енергія
dc.subjectформула Коші
dc.subjectкоефіцієнти розкладу
dc.subjectinternal potential
dc.subjectgravitational energy
dc.subjectCauchy formula
dc.subjectexpansion coefficient
dc.titleOn approach to determine the internal potential and gravitational energy of ellipsoid
dc.title.alternativeПідхід до визначення внутрішнього потенціалу та гравітаційної енергії еліпсоїда
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n3_Fys_M_M-On_approach_to_determine_359-367.pdf
Size:
958.78 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n3_Fys_M_M-On_approach_to_determine_359-367__COVER.png
Size:
378.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: