Scattering of Plane Waves by an Open Arc with Different Boundary Conditions on its Sides

dc.citation.epage21
dc.citation.issue1
dc.citation.spage17
dc.contributor.affiliationLodz University of Technology, Poland
dc.contributor.authorЄмець, Володимир
dc.contributor.authorEmets, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-26T09:41:15Z
dc.date.available2023-04-26T09:41:15Z
dc.date.created2022-04-04
dc.date.issued2022-04-04
dc.description.abstractУ роботі розглянуто підхід до чисельного моделювання проблеми розсіяння електромагнітних плоских хвиль на незамкненій дузі із різними граничними умовами на її сторонах. Відповідна змішана крайова задача зводиться до системи двох сингулярних і гіперсингулярних інтегральних рівнянь. Запропоновано та проаналізовано метод колокації для отримання числових розв’язків одержаних рівнянь. Наведено характеристики поперечного перерізу розсіяння для різних значень кривизни дуги.
dc.description.abstractThe paper considers an approach to numerical modelling of the problem of electromagnetic plane waves scattering by an open arc with different boundary conditions on its sides. The corresponding mixed boundary value problem is reduced to a system of two singular and hypersingular integral equations. The method of collocation for numerical solutions to the equations obtained is proposed and analyzed. Numerical results of the radar cross-section for different values of arc curvatures are presented.
dc.format.extent17-21
dc.format.pages5
dc.identifier.citationEmets V. Scattering of Plane Waves by an Open Arc with Different Boundary Conditions on its Sides / Volodymyr Emets // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 1. — P. 17–21.
dc.identifier.citationenEmets V. (2022) Scattering of Plane Waves by an Open Arc with Different Boundary Conditions on its Sides. Computational Problems of Electrical Engineering (Lviv), vol. 12, no 1, pp. 17-21.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58473
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (12), 2022
dc.relation.references[1] G. Apaydin, F. Hacivelioglu, L. Sevgi, and P. Ufimtsev, “Fringe waves from a wedge with one face electric and the other face magnetic”, IEEE Transactions on Antennas and Propagation, vol. 64, pp. 1125–1130, Mar. 2016.
dc.relation.references[2] G. Apaydin and L. Sevgi, “Method of moments modeling of backscattering by a soft-hard strip”, IEEE Transactions on Antennas and Propagation, vol. 63, pp. 5822–5826, 2015.
dc.relation.references[3] F. Hacivelioglu, L. Sevgi, and P. Y. Ufimtsev, “Method of moments modeling of backscattering by a soft-hard strip”, Backscattering from a soft-hard strip: Primary edge waves approximations, vol. 12, pp. 249–252, 2013.
dc.relation.references[4] V. Emets and J. Rogowski, “Scattering from a strip with mixed boundary conditions”, Radio Science, vol. 55, no. 11, pp. 1–8, 2020.
dc.relation.references[5] M. A. Uslu, G. Apaydin, and L. Sevgi, “Diffraction modeling by a soft/hard strip using finite-difference time-domain method”, IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 306–309, 2017.
dc.relation.references[6] R. Kress, “Inverse scattering from an open arc”, Math. Method. Appl. Sci., vol. 18, no. 4, pp. 267–293, 1995.
dc.relation.references[7] R. Kress and K. M. Lee, “Integral equation methods for scattering from an impedance crack”, J. Comp. Appl. Math., vol. 61, pp. 161–177, 2003.
dc.relation.references[8] K. M. Lee, “Inverse scattering problem for an impedance crack”, Wave Motion, vol. 45, pp. 254–263, 2008.
dc.relation.references[9] H. Li, J. Huang, and G. Zeng, “On the numerical solutions of two-dimensional scattering problems for an open arc”, Boundary Value Problems, vol. 136, pp. 1–15, 2020.
dc.relation.references[10]L. Monch, “On the numerical solution of the direct scattering problem for a sound-hard open arc”, Comput. Appl. Math., vol. 71, pp. 343–356, 1996.
dc.relation.references[11] “On the inverse acoustic scattering problem by an open arc: the sound-hard case”, Inverse Probl., vol. 13, pp. 1379–1392, 1997.
dc.relation.references[12]J. J. Liu, P. A. Krutitskii, and M. Sini, “Numerical solution of the scattering problem for acoustic waves by a two-side crack in 2-d dimensional space”, Journal of Computational Mathematics, vol. 29, no. 2, pp. 141–166, 2011.
dc.relation.referencesen[1] G. Apaydin, F. Hacivelioglu, L. Sevgi, and P. Ufimtsev, "Fringe waves from a wedge with one face electric and the other face magnetic", IEEE Transactions on Antennas and Propagation, vol. 64, pp. 1125–1130, Mar. 2016.
dc.relation.referencesen[2] G. Apaydin and L. Sevgi, "Method of moments modeling of backscattering by a soft-hard strip", IEEE Transactions on Antennas and Propagation, vol. 63, pp. 5822–5826, 2015.
dc.relation.referencesen[3] F. Hacivelioglu, L. Sevgi, and P. Y. Ufimtsev, "Method of moments modeling of backscattering by a soft-hard strip", Backscattering from a soft-hard strip: Primary edge waves approximations, vol. 12, pp. 249–252, 2013.
dc.relation.referencesen[4] V. Emets and J. Rogowski, "Scattering from a strip with mixed boundary conditions", Radio Science, vol. 55, no. 11, pp. 1–8, 2020.
dc.relation.referencesen[5] M. A. Uslu, G. Apaydin, and L. Sevgi, "Diffraction modeling by a soft/hard strip using finite-difference time-domain method", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 306–309, 2017.
dc.relation.referencesen[6] R. Kress, "Inverse scattering from an open arc", Math. Method. Appl. Sci., vol. 18, no. 4, pp. 267–293, 1995.
dc.relation.referencesen[7] R. Kress and K. M. Lee, "Integral equation methods for scattering from an impedance crack", J. Comp. Appl. Math., vol. 61, pp. 161–177, 2003.
dc.relation.referencesen[8] K. M. Lee, "Inverse scattering problem for an impedance crack", Wave Motion, vol. 45, pp. 254–263, 2008.
dc.relation.referencesen[9] H. Li, J. Huang, and G. Zeng, "On the numerical solutions of two-dimensional scattering problems for an open arc", Boundary Value Problems, vol. 136, pp. 1–15, 2020.
dc.relation.referencesen[10]L. Monch, "On the numerical solution of the direct scattering problem for a sound-hard open arc", Comput. Appl. Math., vol. 71, pp. 343–356, 1996.
dc.relation.referencesen[11] "On the inverse acoustic scattering problem by an open arc: the sound-hard case", Inverse Probl., vol. 13, pp. 1379–1392, 1997.
dc.relation.referencesen[12]J. J. Liu, P. A. Krutitskii, and M. Sini, "Numerical solution of the scattering problem for acoustic waves by a two-side crack in 2-d dimensional space", Journal of Computational Mathematics, vol. 29, no. 2, pp. 141–166, 2011.
dc.rights.holder© Національний університет „Львівська політехніка“, 2022
dc.subjectelectromagnetic waves scattering
dc.subjectnumerical modeling
dc.subjectcollocation method
dc.subjectmixed boundary conditions
dc.titleScattering of Plane Waves by an Open Arc with Different Boundary Conditions on its Sides
dc.title.alternativeРозсіяння плоских хвиль відкритою дугою із різними граничними умовами на її сторонах
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2022v12n1_Emets_V-Scattering_of_Plane_Waves_by_17-21.pdf
Size:
409.23 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: