Low-frequency dynamics of 1d quantum lattice gas: the case of local potential with double wells
dc.citation.epage | 241 | |
dc.citation.issue | 2 | |
dc.citation.spage | 235 | |
dc.contributor.affiliation | Інститут фізики конденсованих систем НАН України | |
dc.contributor.affiliation | Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine | |
dc.contributor.author | Стасюк, І. | |
dc.contributor.author | Стеців, Р. | |
dc.contributor.author | Фаренюк, О. | |
dc.contributor.author | Stasyuk, I. | |
dc.contributor.author | Stetsiv, R. | |
dc.contributor.author | Farenyuk, O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-27T08:51:45Z | |
dc.date.available | 2020-02-27T08:51:45Z | |
dc.date.created | 2018-02-26 | |
dc.date.issued | 2018-02-26 | |
dc.description.abstract | На основі моделі квантового ґраткового газу досліджено низькочастотну динаміку одновимірних систем (типу атомних ланцюжків з водневими зв’язками) з двомінімумним локальним ангармонічним потенціалом. В моделі враховано короткосяжні кореляції між частинками, а також перенесення частинок як на зв’язках в двоямному потенціалі, так і між зв’язками. Методом точної діагоналізації з використанням формалізму функцій Гріна розраховано динамічну дипольну сприйнятливість, що визначає діелектричний відгук системи. Отримано густину коливних станів, проаналізовано її частотну залежність. Замість стандартної м’якої моди отримано розщеплення найнижчої гілки в спектрі в області переходу до впорядкованого основного стану. | |
dc.description.abstract | The quantum lattice gas model is used for investigation of low-frequency dynamics of the one-dimensional lattice (an analogue of the H-bonded atomic chain) with the two minima local anharmonic potential. Short-range correlations and particle hopping within potential wells as well as between of them are taken into account. The dynamical dipole susceptibility that determines the dielectric response of the system, is calculated using the exact diagonalization procedure on clasters and the Green’s function formalism. The density of vibrational states is found, its frequency dependence is analyzed. The splitting of the lowest branch in spectrum in the region of transition to the ordered ground state (instead of the standard soft-mode behaviour) is revealed. | |
dc.format.extent | 235-241 | |
dc.format.pages | 7 | |
dc.identifier.citation | Stasyuk I. Low-frequency dynamics of 1d quantum lattice gas: the case of local potential with double wells / I. Stasyuk, R. Stetsiv, O. Farenyuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 235–241. | |
dc.identifier.citationen | Stasyuk I. Low-frequency dynamics of 1d quantum lattice gas: the case of local potential with double wells / I. Stasyuk, R. Stetsiv, O. Farenyuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 235–241. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46131 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (5), 2018 | |
dc.relation.references | 1. Stasyuk I. V., Vorobyov O. Energy spectrum and phase diagrams of two-sublattice hard-core boson model. Condens. Matter Phys. 16, 23005 (2013). | |
dc.relation.references | 2. Menotti C., Trivedi N. Spectral weight redistribution in strongly correlated bosons in optical lattices. Phys. Rev. B. 77, 235120 (2008). | |
dc.relation.references | 3. Stasyuk I. V., Pavlenko N. I., Hilczer B. Proton ordering model of superionic phase transition in (NH4)3H(SeO4)2 crystal. Phase Transitions. 62, 135–156 (1997). | |
dc.relation.references | 4. Pavlenko N. I., Stasyuk I. V. The effect of proton interactions on the conductivity behaviour in systems with superionic phases. J. Chem. Phys. 114, 4607 (2001). | |
dc.relation.references | 5. Stasyuk I. V., Ivankiv O. L., Pavlenko N. I. Orientational-tunneling model of one-dimensional molecular systems with hydrogen bonds. J. Phys. Stud. 1 (3), 418–430 (1997). | |
dc.relation.references | 6. Stetsiv R. Ya., Stasyuk I. V., Vorobyov O. Energy spectrum and state diagrams of one-dimensional ionic conductor. Ukr. J. Phys. 59 (5), 515–522 (2014). | |
dc.relation.references | 7. Stasyuk I. V., Stetsiv R. Ya. Dynamic conductivity of one-dimensional ion conductors. Impedance, Nyquist diagrams. Condens. Matter Phys. 19, 43704 (2016). | |
dc.relation.references | 8. Mahan G. D. Lattice gas theory of ionic conductivity. Phys. Rev. B. 14, 780 (1976). | |
dc.relation.references | 9. Kobayashi K. Dynamical theory of the phase transition in KH2P O4-type ferroelectric crystals. J. Phys. Soc. Japan. 24, 497–508 (1968). | |
dc.relation.references | 10. De Gennes P. G. Collective motion of hydrogen bond. Solid State Commun. 1, 132-137 (1963). | |
dc.relation.references | 11. Stasyuk I. V., Stetsiv R. Ya., Sizonenko Yu. V. Dynamics of charge transfer along hydrogen bond. Condens. Matter Phys. 5 (4), 685–706 (2002). | |
dc.relation.references | 12. Stasyuk I. V., Levitskii R. R., Moina A. P. External pressure influence on ferroelectrics and antiferroelectrics of KH2P O4 family: A unified model. Phys. Rev. B. 59, 8530–8540 (1999). | |
dc.relation.references | 13. Blinc R., Zekˇs B. Dynamics of order-disorder-type ferroelectrics and antiferroelectrics. Adv. Phys. ˇ 21, 693–757 (1972). | |
dc.relation.references | 14. Blinc R. The soft mode in H-bonded ferroelectrics revisited. Croat. Chem. Acta. 55 (1–2), 7–13 (1982). | |
dc.relation.references | 15. M¨unchW., Kreuer K. D., Traub U.,Maier J. A molecular dynamics study of the high proton conductivity phase of CsHSO4. Solid State Ionics. 77, 10–14 (1995). | |
dc.relation.references | 16. Hassan R., Campbell E. S. The energy and structure of Bjerrum defects in the ice 1h determined with an additive and a nonadditive potential. J. Chem. Phys. 97 (6), 4362–4335 (1992). | |
dc.relation.references | 17. St¨oferle T., Moritz H., Schori C., K¨ohl M., Esslinger T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004). | |
dc.relation.references | 18. Incci A., Cazalilla M. A., Ho A. F., Gianmarchi T. Energy absorption of a Bose gas in a periodically modulated optical lattice. Phys. Rev. A. 73, 041608(R) (2006). | |
dc.relation.referencesen | 1. Stasyuk I. V., Vorobyov O. Energy spectrum and phase diagrams of two-sublattice hard-core boson model. Condens. Matter Phys. 16, 23005 (2013). | |
dc.relation.referencesen | 2. Menotti C., Trivedi N. Spectral weight redistribution in strongly correlated bosons in optical lattices. Phys. Rev. B. 77, 235120 (2008). | |
dc.relation.referencesen | 3. Stasyuk I. V., Pavlenko N. I., Hilczer B. Proton ordering model of superionic phase transition in (NH4)3H(SeO4)2 crystal. Phase Transitions. 62, 135–156 (1997). | |
dc.relation.referencesen | 4. Pavlenko N. I., Stasyuk I. V. The effect of proton interactions on the conductivity behaviour in systems with superionic phases. J. Chem. Phys. 114, 4607 (2001). | |
dc.relation.referencesen | 5. Stasyuk I. V., Ivankiv O. L., Pavlenko N. I. Orientational-tunneling model of one-dimensional molecular systems with hydrogen bonds. J. Phys. Stud. 1 (3), 418–430 (1997). | |
dc.relation.referencesen | 6. Stetsiv R. Ya., Stasyuk I. V., Vorobyov O. Energy spectrum and state diagrams of one-dimensional ionic conductor. Ukr. J. Phys. 59 (5), 515–522 (2014). | |
dc.relation.referencesen | 7. Stasyuk I. V., Stetsiv R. Ya. Dynamic conductivity of one-dimensional ion conductors. Impedance, Nyquist diagrams. Condens. Matter Phys. 19, 43704 (2016). | |
dc.relation.referencesen | 8. Mahan G. D. Lattice gas theory of ionic conductivity. Phys. Rev. B. 14, 780 (1976). | |
dc.relation.referencesen | 9. Kobayashi K. Dynamical theory of the phase transition in KH2P O4-type ferroelectric crystals. J. Phys. Soc. Japan. 24, 497–508 (1968). | |
dc.relation.referencesen | 10. De Gennes P. G. Collective motion of hydrogen bond. Solid State Commun. 1, 132-137 (1963). | |
dc.relation.referencesen | 11. Stasyuk I. V., Stetsiv R. Ya., Sizonenko Yu. V. Dynamics of charge transfer along hydrogen bond. Condens. Matter Phys. 5 (4), 685–706 (2002). | |
dc.relation.referencesen | 12. Stasyuk I. V., Levitskii R. R., Moina A. P. External pressure influence on ferroelectrics and antiferroelectrics of KH2P O4 family: A unified model. Phys. Rev. B. 59, 8530–8540 (1999). | |
dc.relation.referencesen | 13. Blinc R., Zekˇs B. Dynamics of order-disorder-type ferroelectrics and antiferroelectrics. Adv. Phys. ˇ 21, 693–757 (1972). | |
dc.relation.referencesen | 14. Blinc R. The soft mode in H-bonded ferroelectrics revisited. Croat. Chem. Acta. 55 (1–2), 7–13 (1982). | |
dc.relation.referencesen | 15. M¨unchW., Kreuer K. D., Traub U.,Maier J. A molecular dynamics study of the high proton conductivity phase of CsHSO4. Solid State Ionics. 77, 10–14 (1995). | |
dc.relation.referencesen | 16. Hassan R., Campbell E. S. The energy and structure of Bjerrum defects in the ice 1h determined with an additive and a nonadditive potential. J. Chem. Phys. 97 (6), 4362–4335 (1992). | |
dc.relation.referencesen | 17. St¨oferle T., Moritz H., Schori C., K¨ohl M., Esslinger T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004). | |
dc.relation.referencesen | 18. Incci A., Cazalilla M. A., Ho A. F., Gianmarchi T. Energy absorption of a Bose gas in a periodically modulated optical lattice. Phys. Rev. A. 73, 041608(R) (2006). | |
dc.rights.holder | CMM IAPMM NASU | |
dc.rights.holder | © 2018 Lviv Polytechnic National University | |
dc.subject | модель жорстких бозонів | |
dc.subject | двоямний локальний потенціал | |
dc.subject | динамічна сприйнятливість | |
dc.subject | коливний спектр | |
dc.subject | hard-core boson model | |
dc.subject | double-well local potential | |
dc.subject | dynamical susceptibility | |
dc.subject | vibrational spectrum | |
dc.subject.udc | 51-73 | |
dc.subject.udc | 538.915 | |
dc.subject.udc | 544.22 | |
dc.subject.udc | 546.22/24 | |
dc.title | Low-frequency dynamics of 1d quantum lattice gas: the case of local potential with double wells | |
dc.title.alternative | Низькочастотна динаміка одновимірного квантового ґраткового газу: випадок двоямного локального потенціалу | |
dc.type | Article |
Files
License bundle
1 - 1 of 1