Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations

dc.citation.epage145
dc.citation.issue1
dc.citation.spage140
dc.contributor.affiliationНацiональний унiверситет “Львiвська полiтехнiка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКостробій, П. П.
dc.contributor.authorМаркович, Б. М.
dc.contributor.authorПольовий, В. Є.
dc.contributor.authorKostrobij, P. P.
dc.contributor.authorMarkovych, B. M.
dc.contributor.authorPolovyi, V. Ye.
dc.date.accessioned2023-03-06T12:28:16Z
dc.date.available2023-03-06T12:28:16Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractДослiджено модель опису впливу кулонiвської взаємодiї мiж електронами (кулонiвських кореляцiй) на частотний спектр плазмон-поляритонних хвиль елекнонетральних структур дiелектрик/метал/дiелектрик. Показано, що для атомно тонких металевих плiвок (ATMF) врахування таких кореляцiї впливає як на квантово-розмiрну поведiнку частотного спектру як функцiю товщини металевої плiвки так i суттєво покращує кореляцiю теоретичних розрахункiв та експерименту.
dc.description.abstractThe model that describes the influence of Coulomb interaction between electrons (Coulomb correlations) on a frequency spectrum of plasmon-polariton waves in electroneutral structures dielectric/metal/dielectric is investigated. It is shown that for atomically thin metal films (ATMF), such correlations affects both the quantum-dimensional behavior of the frequency spectrum as a function of the thickness of the metal film and significantly improves the correlation of theoretical calculations and experiment.
dc.format.extent140-145
dc.format.pages6
dc.identifier.citationKostrobij P. P. Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations / Kostrobij P. P., Markovych B. M., Polovyi V. Ye. // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 140–145.
dc.identifier.citationenKostrobij P. P., Markovych B. M., Polovyi V. Ye. (2020) Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 140-145.
dc.identifier.doiDOI: 10.23939/mmc2020.01.140
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57508
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] Maier S. A. Plasmonics: Fundamentals and Application. Springer–Verlag (2007).
dc.relation.references[2] Abd El-Fattah Z. M., Mkhitaryan V., Brede J., Fern´andez L., Li Ch., Guo Q., Ghosh A., Echarri A. R., Naveh D., Xia F., Ortega J. E., de Abajo F. J. G. Plasmonics in Atomically-Thin Crystalline Silver Films. ACS Nano. 13 (7), 7771–7779 (2019).
dc.relation.references[3] Echarri A. R., Cox J. D., de Abajo F. J. G. Quantum Effects in the Acoustic Plasmons of Atomically-Thin Heterostructures. Optica. 6 (5), 798–798 (2019).
dc.relation.references[4] Ando T., Fowler A. B., Stern F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982).
dc.relation.references[5] Taghizadeh A., Pedersen T. G. Plasmons in ultra-thin gold slabs with quantum spill-qut: Fourier modal method, perturbative approach, and analytical model. Optics Express. 27 (25), 36941–36952 (2019).
dc.relation.references[6] Skjølstrup E. J. H., Søndergaard T., Pedersen T. G. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays. Phys. Rev. B. 97 (11), 115429 (2018).
dc.relation.references[7] Skjølstrup E. J. H., Søndergaard T., Pedersen T. G. Quantum spill-out in nanometer-thin gold slabs: Effect on the plasmon mode index and the plasmonic absorption. Phys. Rev. B. 99 (15), 155427 (2019).
dc.relation.references[8] Kostrobij P. P., Markovych B. M. The chemical potential and the work function of a metal film on a dielectric substrate. Philosophical Magazine Letters. 99 (1), 12–20 (2019).
dc.relation.references[9] Hohenberg P., KohnW. Inhomogeneous Electron Gas. Phys. Rev. B. 136 (3B), B864–B871 (1964).
dc.relation.references[10] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018).
dc.relation.references[11] Vavrukh M. V., Slobodyan S. B. Electron-plasmon model in the electron liquid theory. Condensed Matter Physics. 8 (3), 453–472 (2005).
dc.relation.references[12] Kostrobij P. P., Markovych B. M., Polovyi V. Y. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures. Mathematical Modeling and Computing. 6 (2),297–303 (2019).
dc.relation.references[13] Jackson J. D. Classical Electrodynamics. John Wiley & Sons (2007).
dc.relation.references[14] Vakarchuk I. O. Kvantova mekhanika. Lviv, LNU im. I. Franka (2007), (in Ukrainian).
dc.relation.references[15] Ashcroft N.W, Mermin N. D. Solid State Physics. Cornell University. Harcourt (1976).
dc.relation.references[16] Kurbatsky V. P. Dielectric tensor of low-dimensional metal systems. Electronic Properties of Solid. 125(1), 148–158 (2017).
dc.relation.references[17] Korotun A. V. Size oscillations of the work function of a metal film on a dielectric substrate. Phys. Solid State. 57, 391–394 (2015).
dc.relation.references[18] Pogosov V. V., Babich A. V., Vakula P. V. On the Influence of the Band Structure of Insulators and Image Forces on the Spectral Characteristics of Metal–Insulator Film Systems. Phys. Solid State. 55, 2120–2123(2013).
dc.relation.referencesen[1] Maier S. A. Plasmonics: Fundamentals and Application. Springer–Verlag (2007).
dc.relation.referencesen[2] Abd El-Fattah Z. M., Mkhitaryan V., Brede J., Fern´andez L., Li Ch., Guo Q., Ghosh A., Echarri A. R., Naveh D., Xia F., Ortega J. E., de Abajo F. J. G. Plasmonics in Atomically-Thin Crystalline Silver Films. ACS Nano. 13 (7), 7771–7779 (2019).
dc.relation.referencesen[3] Echarri A. R., Cox J. D., de Abajo F. J. G. Quantum Effects in the Acoustic Plasmons of Atomically-Thin Heterostructures. Optica. 6 (5), 798–798 (2019).
dc.relation.referencesen[4] Ando T., Fowler A. B., Stern F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982).
dc.relation.referencesen[5] Taghizadeh A., Pedersen T. G. Plasmons in ultra-thin gold slabs with quantum spill-qut: Fourier modal method, perturbative approach, and analytical model. Optics Express. 27 (25), 36941–36952 (2019).
dc.relation.referencesen[6] Skjølstrup E. J. H., Søndergaard T., Pedersen T. G. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays. Phys. Rev. B. 97 (11), 115429 (2018).
dc.relation.referencesen[7] Skjølstrup E. J. H., Søndergaard T., Pedersen T. G. Quantum spill-out in nanometer-thin gold slabs: Effect on the plasmon mode index and the plasmonic absorption. Phys. Rev. B. 99 (15), 155427 (2019).
dc.relation.referencesen[8] Kostrobij P. P., Markovych B. M. The chemical potential and the work function of a metal film on a dielectric substrate. Philosophical Magazine Letters. 99 (1), 12–20 (2019).
dc.relation.referencesen[9] Hohenberg P., KohnW. Inhomogeneous Electron Gas. Phys. Rev. B. 136 (3B), B864–B871 (1964).
dc.relation.referencesen[10] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018).
dc.relation.referencesen[11] Vavrukh M. V., Slobodyan S. B. Electron-plasmon model in the electron liquid theory. Condensed Matter Physics. 8 (3), 453–472 (2005).
dc.relation.referencesen[12] Kostrobij P. P., Markovych B. M., Polovyi V. Y. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures. Mathematical Modeling and Computing. 6 (2),297–303 (2019).
dc.relation.referencesen[13] Jackson J. D. Classical Electrodynamics. John Wiley & Sons (2007).
dc.relation.referencesen[14] Vakarchuk I. O. Kvantova mekhanika. Lviv, LNU im. I. Franka (2007), (in Ukrainian).
dc.relation.referencesen[15] Ashcroft N.W, Mermin N. D. Solid State Physics. Cornell University. Harcourt (1976).
dc.relation.referencesen[16] Kurbatsky V. P. Dielectric tensor of low-dimensional metal systems. Electronic Properties of Solid. 125(1), 148–158 (2017).
dc.relation.referencesen[17] Korotun A. V. Size oscillations of the work function of a metal film on a dielectric substrate. Phys. Solid State. 57, 391–394 (2015).
dc.relation.referencesen[18] Pogosov V. V., Babich A. V., Vakula P. V. On the Influence of the Band Structure of Insulators and Image Forces on the Spectral Characteristics of Metal–Insulator Film Systems. Phys. Solid State. 55, 2120–2123(2013).
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectповерхневi плазмони
dc.subjectспектр плазмона
dc.subjectтовщина металевого шару
dc.subjectдiелектрична проникнiсть
dc.subjectелектронейтральнiсть
dc.subjectsurface plasmons
dc.subjectplasmon spectrum
dc.subjectmetal layer thickness
dc.subjectdielectric permittivity
dc.subjectelectroneutrality
dc.subject.udc78A50
dc.subject.udc78-05
dc.subject.udc78A25
dc.titleFrequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations
dc.title.alternativeЧастотний спектр плазмон-поляритонних хвиль: кулонівські кореляції
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v7n1_Kostrobij_P_P-Frequency_spectrum_140-145.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: