Reconstruction of the depletion layer in MOSFET by genetic algorithms

dc.citation.epage103
dc.citation.issue1
dc.citation.spage96
dc.contributor.affiliationУніверситет Кадi Айяд, Лабораторія прикладної математики та обчислювальної техніки,Факультет науки i технiки
dc.contributor.affiliationLaboratory of Applied Mathematics and Computer Science, Faculty of Science and Technology, Cady Ayyad University
dc.contributor.authorЮнес, Ель Язиді
dc.contributor.authorАбделлатиф, Еллабіб
dc.contributor.authorYouness, El Yazidi
dc.contributor.authorAbdellatif, Ellabib
dc.date.accessioned2023-03-06T12:28:12Z
dc.date.available2023-03-06T12:28:12Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractУ цiй роботi розглядається напiвпровiдниковий пристрiй на основi МПД-структури. Густину носiїв заряду в МПД-структурi змодельовано рiвнянням дрейфової дифузiї. Для того, щоб отримати просте рiвняння Лапласа або Пуассона, використано формули густини заряду за умов рiвноваги. Означено функцiонал витрат для формулювання задачi оптимiзацiї форми. Доведено iснування оптимального розв’язку. Для розв’язання задачi оптимiзацiї розроблено числовий пiдхiд на основi методу скiнченних елементiв у поєднаннi з генетичним алгоритмом. Для пiдтвердження обґрунтованостi запропонованого пiдходу наведено декiлька чисельних прикладiв
dc.description.abstractIn this work, the MOSFET device is considered. The carrier densities in the MOSFET are modeled by the drift-diffusion equation. We manipulate the formulas of the charge density at the equilibrium in order to derive a simple Poisson’s or Laplace’s equation. To formulate a shape optimization problem, we have defined a cost functional. The existence of an optimal solution is proved. To solve the involved optimization problem, we have designed a numerical approach based on the finite element method combined with the genetic algorithm. Several numerical examples are established to prove the validity of the proposed approach.
dc.format.extent96-103
dc.format.pages8
dc.identifier.citationYouness E. Y. Reconstruction of the depletion layer in MOSFET by genetic algorithms / El Yazidi Youness, Ellabib Abdellatif // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 96–103.
dc.identifier.citationenYouness E. Y., Abdellatif E. (2020) Reconstruction of the depletion layer in MOSFET by genetic algorithms. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 96-103.
dc.identifier.doiDOI: 10.23939/mmc2020.01.096
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57504
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] Abouchabaka J., Aboulaich R., Guennoun O., Nachaoui A., Souissi A. Shape optimization for a simulation of a semiconductor problem. Mathematics and Computers in Simulation. 56, 1–16 (2001).
dc.relation.references[2] Friedman A. A. Free Boundary Problems Associated with Multiscale Tumor Models. Mathematical Modeling of Natural Phenomena. 4 (3), 134–155 (2009).
dc.relation.references[3] Ellabib A., Nachaoui A. On the numerical solution of a free boundary identification problem. Inverse Problems in Engineering. 9, 235–260 (2001).
dc.relation.references[4] Sze S. M. Semiconductor Devices: Physics and Technology. John Wiley and Sons, New Jersey (1985).
dc.relation.references[5] Zhang R., Sun J. The reconstruction of obstacles in a waveguide using finite elements. Journal of Computational Mathematics. 36, 29–46 (2017).
dc.relation.references[6] Ciarlet P. G. The Finite Element Method for Elliptic Problems. Studies in mathematics and its applications.North Holland (1978).
dc.relation.references[7] Goldberg D. E. Genetic Algorithm in search, optimisation, and machine learning. Addison–Wesley, Reading, MA (1989).
dc.relation.references[8] Pironneau O. Optimal Shape Design for Elliptic Systems. In: Drenick R. F., Kozin F. (eds) System Modeling and Optimization. Lecture Notes in Control and Information Sciences, vol. 38. Springer, Berlin, Heidelberg, p. 42–66 (2005).
dc.relation.references[9] Chakib A., Nachaoui A., Nachaoui M. Existence analysis of an optimal shape design problem with non coercive state equation. Nonlinear Analysis: Real World Applications. 28, 171–183 (2016).
dc.relation.references[10] Holland J. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press (1975).
dc.relation.references[11] Prautzsch H., BoehmW., Paluszny M. B´ezier and B-Spline Techniques. Springer–Verlag, Berlin, Heidelberg(2002).
dc.relation.references[12] Persson P. O., Strang G. A Simple Mesh Generator in MATLAB. SIAM Review. 46, 329–345 (2004).
dc.relation.references[13] Demengel G., Pouget J. P. Mod`eles de B´eziers, de B-splines et de NURBS: Math´ematiques des courbes etdes surfaces. Ellipses (1998)
dc.relation.referencesen[1] Abouchabaka J., Aboulaich R., Guennoun O., Nachaoui A., Souissi A. Shape optimization for a simulation of a semiconductor problem. Mathematics and Computers in Simulation. 56, 1–16 (2001).
dc.relation.referencesen[2] Friedman A. A. Free Boundary Problems Associated with Multiscale Tumor Models. Mathematical Modeling of Natural Phenomena. 4 (3), 134–155 (2009).
dc.relation.referencesen[3] Ellabib A., Nachaoui A. On the numerical solution of a free boundary identification problem. Inverse Problems in Engineering. 9, 235–260 (2001).
dc.relation.referencesen[4] Sze S. M. Semiconductor Devices: Physics and Technology. John Wiley and Sons, New Jersey (1985).
dc.relation.referencesen[5] Zhang R., Sun J. The reconstruction of obstacles in a waveguide using finite elements. Journal of Computational Mathematics. 36, 29–46 (2017).
dc.relation.referencesen[6] Ciarlet P. G. The Finite Element Method for Elliptic Problems. Studies in mathematics and its applications.North Holland (1978).
dc.relation.referencesen[7] Goldberg D. E. Genetic Algorithm in search, optimisation, and machine learning. Addison–Wesley, Reading, MA (1989).
dc.relation.referencesen[8] Pironneau O. Optimal Shape Design for Elliptic Systems. In: Drenick R. F., Kozin F. (eds) System Modeling and Optimization. Lecture Notes in Control and Information Sciences, vol. 38. Springer, Berlin, Heidelberg, p. 42–66 (2005).
dc.relation.referencesen[9] Chakib A., Nachaoui A., Nachaoui M. Existence analysis of an optimal shape design problem with non coercive state equation. Nonlinear Analysis: Real World Applications. 28, 171–183 (2016).
dc.relation.referencesen[10] Holland J. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press (1975).
dc.relation.referencesen[11] Prautzsch H., BoehmW., Paluszny M. B´ezier and B-Spline Techniques. Springer–Verlag, Berlin, Heidelberg(2002).
dc.relation.referencesen[12] Persson P. O., Strang G. A Simple Mesh Generator in MATLAB. SIAM Review. 46, 329–345 (2004).
dc.relation.referencesen[13] Demengel G., Pouget J. P. Mod`eles de B´eziers, de B-splines et de NURBS: Math´ematiques des courbes etdes surfaces. Ellipses (1998)
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectнапiвпровiдник
dc.subjectоптимiзацiя форми
dc.subjectскiнченний елемент
dc.subjectгенетичний алгоритм
dc.subjectsemiconductor
dc.subjectshape optimization
dc.subjectfinite element
dc.subjectgenetic algorithm
dc.subject.udc49Q10
dc.subject.udc65L60
dc.subject.udc90C59
dc.titleReconstruction of the depletion layer in MOSFET by genetic algorithms
dc.title.alternativeРеконструкція збідненого шару в МДП-структурі за допомогою генетичних алгоритмів
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v7n1_Youness_E_Y-Reconstruction_of_the_96-103.pdf
Size:
913.04 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: