Carbon monoxide oxidation on the Pt-catalyst: modelling and stability

dc.citation.epage106
dc.citation.issue1
dc.citation.spage96
dc.citation.volume4
dc.contributor.affiliationНаціональний унівеpситет «Львівська політехніка»
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorРижа, І.
dc.contributor.authorМацелюх, М.
dc.contributor.authorRyzha, I.
dc.contributor.authorMatseliukh, M.
dc.coverage.placenameLviv
dc.date.accessioned2018-06-05T14:12:25Z
dc.date.available2018-06-05T14:12:25Z
dc.date.created2017-06-15
dc.date.issued2017-06-15
dc.description.abstractДослiджено двовимiрну математичну модель оксидацiї чадного газу (СО) для механi- зму Лангмюра–Гiншелвуда на поверхнi платинового каталiзатора (Pt) з урахуванням перебудови поверхнi каталiзатора пiд впливом процесiв адсорбцiї-десорбцiї. Проана- лiзовано стiйкiсть розв’язкiв моделi. Виявлено просторово-часовi перiодичнi хiмiчнi коливання покриттiв СО, кисню (О) та частки поверхнi неперебудованої структури (1 × 1). Дослiджено умови виникнення бiфуркацiй Хопфа та Тюрiнга.
dc.description.abstractA two-dimensional mathematical model of carbon monoxide (CO) oxidation is investigated for the Langmuir-Hinshelwood mechanism on the surface of a Platinum (Pt) catalyst. The adsorbate-driven structural phase transition of catalytic surface is taken into account. The stability analysis of the model solutions is carried out. It is shown that the spatio-temporal periodic chemical oscillations of CO and oxygen (O) surface coverages and a fraction of the surface in the non-reconstructed (1 × 1)-structure occur. Conditions for Hopf and Turing bifurcation to arise are investigated.
dc.format.extent96-106
dc.format.pages11
dc.identifier.citationRyzha I. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability / I. Ryzha, M. Matseliukh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 96–106.
dc.identifier.citationenRyzha I. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability / I. Ryzha, M. Matseliukh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 96–106.
dc.identifier.issn2312-9794
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/41465
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (4), 2017
dc.relation.references[1] SadeghiP., DunphyK., PuncktC., RotermundH.H. Inversion of pattern anisotropy during CO oxidation on Pt(110) correlated with appearance of subsurface oxygen. J. Phys. Chem. C. 116 (7), 4686–4691 (2012).
dc.relation.references[2] ZaikinA.N., ZhabotinskyA.M. Concentration wave propagation in two-dimensional liquid-phase selfoscillating system. Nature. 225, 535–537 (1970).
dc.relation.references[3] RotermundH.H., EngelW., KordeschM., ErtlG. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature. 343, 355–357 (1990).
dc.relation.references[4] Jakubith S., RotermundH.H., EngelW., von OertzenA., ErtlG. Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013–3016 (1990).
dc.relation.references[5] NettesheimS., von OertzenA., RotermundH.H., ErtlG. Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): Front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993).
dc.relation.references[6] KimM., BertramM., PollmannM., von OertzenA., MikhailovA. S., RotermundH.H., ErtlG. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science. 292, 1357–1360 (2001).
dc.relation.references[7] Wolff J., PapathanasiouA.G., Kevrekidis I.G., RotermundH.H., ErtlG. Spatiotemporal addressing of surface activity. Science. 294, 134–137 (2001).
dc.relation.references[8] Slin’koM.M., JaegerN. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994).
dc.relation.references[9] BaxterR. J., HuP. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
dc.relation.references[10] WilfM., DawsonP.T. The adsorption and desorption of oxygen on the Pt(110) surface; a thermal desorption and LEED/AES study. Surf. Sci. 65, 399–418 (1977).
dc.relation.references[11] GomerR. Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53 (7), 917–1002 (1990).
dc.relation.references[12] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985).
dc.relation.references[13] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1 × 2) − (1 × 1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).
dc.relation.references[14] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96, 9161–9172 (1992).
dc.relation.references[15] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
dc.relation.references[16] GasserR.P.H., SmithE.B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10), 457–458 (1967).
dc.relation.references[17] BertramM., MikhailovA. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207:1–11 (2003).
dc.relation.references[18] Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010).
dc.relation.references[19] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990).
dc.relation.references[20] SuchorskiY. Private comunication.
dc.relation.references[21] KornG.A., KornT.M. Mathematical handbook for scientists and engineers. Courier Corporation (2000).
dc.relation.references[22] KuznetsovY. Elements of applied bifurcation theory. New York, Springer (1995).
dc.relation.references[23] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. Phys. J. 61 (2), 134–142 (2016).
dc.relation.references[24] HoyleR. Pattern Formation. New York, Cambridge University Press (2006).
dc.relation.referencesen[1] SadeghiP., DunphyK., PuncktC., RotermundH.H. Inversion of pattern anisotropy during CO oxidation on Pt(110) correlated with appearance of subsurface oxygen. J. Phys. Chem. P. 116 (7), 4686–4691 (2012).
dc.relation.referencesen[2] ZaikinA.N., ZhabotinskyA.M. Concentration wave propagation in two-dimensional liquid-phase selfoscillating system. Nature. 225, 535–537 (1970).
dc.relation.referencesen[3] RotermundH.H., EngelW., KordeschM., ErtlG. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature. 343, 355–357 (1990).
dc.relation.referencesen[4] Jakubith S., RotermundH.H., EngelW., von OertzenA., ErtlG. Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013–3016 (1990).
dc.relation.referencesen[5] NettesheimS., von OertzenA., RotermundH.H., ErtlG. Reaction diffusion patterns in the catalytic CO oxidation on Pt(110): Front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993).
dc.relation.referencesen[6] KimM., BertramM., PollmannM., von OertzenA., MikhailovA. S., RotermundH.H., ErtlG. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science. 292, 1357–1360 (2001).
dc.relation.referencesen[7] Wolff J., PapathanasiouA.G., Kevrekidis I.G., RotermundH.H., ErtlG. Spatiotemporal addressing of surface activity. Science. 294, 134–137 (2001).
dc.relation.referencesen[8] Slin’koM.M., JaegerN. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994).
dc.relation.referencesen[9] BaxterR. J., HuP. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
dc.relation.referencesen[10] WilfM., DawsonP.T. The adsorption and desorption of oxygen on the Pt(110) surface; a thermal desorption and LEED/AES study. Surf. Sci. 65, 399–418 (1977).
dc.relation.referencesen[11] GomerR. Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53 (7), 917–1002 (1990).
dc.relation.referencesen[12] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985).
dc.relation.referencesen[13] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1 × 2) − (1 × 1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).
dc.relation.referencesen[14] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96, 9161–9172 (1992).
dc.relation.referencesen[15] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
dc.relation.referencesen[16] GasserR.P.H., SmithE.B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10), 457–458 (1967).
dc.relation.referencesen[17] BertramM., MikhailovA. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207:1–11 (2003).
dc.relation.referencesen[18] Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010).
dc.relation.referencesen[19] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990).
dc.relation.referencesen[20] SuchorskiY. Private comunication.
dc.relation.referencesen[21] KornG.A., KornT.M. Mathematical handbook for scientists and engineers. Courier Corporation (2000).
dc.relation.referencesen[22] KuznetsovY. Elements of applied bifurcation theory. New York, Springer (1995).
dc.relation.referencesen[23] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. Phys. J. 61 (2), 134–142 (2016).
dc.relation.referencesen[24] HoyleR. Pattern Formation. New York, Cambridge University Press (2006).
dc.rights.holder© 2017 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectкаталітична реакція окислення
dc.subjectреакційно-дифузійна модель
dc.subjectбіфуркація Хопфа
dc.subjectбіфуркація Тюрінга
dc.subjectreaction of catalytic oxidation
dc.subjectreaction-diffusion model
dc.subjectHopf bifurcation
dc.subjectTuring bifurcation
dc.subject.udc538.9
dc.titleCarbon monoxide oxidation on the Pt-catalyst: modelling and stability
dc.title.alternativeОксидація чадного газу на поверхні Pt-каталізатора: моделювання і стійкість
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2017v4n1_Ryzha_I-Carbon_monoxide_oxidation_96-106.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2017v4n1_Ryzha_I-Carbon_monoxide_oxidation_96-106__COVER.png
Size:
388.7 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: