Modeling throttle bridge measuring transducers of physical-mechanical parameters of Newtonian fluids

dc.citation.epage525
dc.citation.issue3
dc.citation.spage515
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПістун, Є. П.
dc.contributor.authorМатіко, Г. Ф.
dc.contributor.authorКрих, Г. Б.
dc.contributor.authorМатіко, Ф. Д.
dc.contributor.authorPistun, Ye. P.
dc.contributor.authorMatiko, H. F.
dc.contributor.authorKrykh, H. B.
dc.contributor.authorMatiko, F. D.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-25T07:19:10Z
dc.date.available2023-10-25T07:19:10Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractУ статті запропоновано вимірювальний перетворювач фізико-механічного параметра ньютонівської рідини на основі дросельної мостової вимірювальної схеми із однаковими турбулентними і ламінарними дроселями в протилежних плечах. Побудована математична модель дросельного мостового вимірювального перетворювача комбінованого параметра, який залежить від кінематичної в’язкості і густини рідини. У роботі сформульована та аналітично вирішена задача параметричної оптимізації запропонованого вимірювального перетворювача. Отримано розрахункову функцію перетворення вимірювального перетворювача комбінованого параметра реактивного палива.
dc.description.abstractThe paper proposes a measuring transducer of the physical-mechanical parameters of a Newtonian fluid based on a throttle bridge measuring diagram with identical turbulent and laminar throttles in opposite arms. A mathematical model is built for the throttle bridge transducer of the combined parameter, which depends on the kinematic viscosity and density of the fluid. The problem of parametric optimization of the proposed measuring transducer is formulated and analytically solved in the paper. The authors calculated the transform function of the measuring transducer of the combined parameter of jet fuel.
dc.format.extent515-525
dc.format.pages11
dc.identifier.citationModeling throttle bridge measuring transducers of physical-mechanical parameters of Newtonian fluids / Ye. P. Pistun, H. F. Matiko, H. B. Krykh, F. D. Matiko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 515–525.
dc.identifier.citationenModeling throttle bridge measuring transducers of physical-mechanical parameters of Newtonian fluids / Ye. P. Pistun, H. F. Matiko, H. B. Krykh, F. D. Matiko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 515–525.
dc.identifier.doidoi.org/10.23939/mmc2021.03.515
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60405
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 3 (8), 2021
dc.relation.references[1] Liu G., Yan B., Chen G. Technical review on jet fuel production. Renewable and Sustainable Energy Reviews. 25, 59–70 (2013).
dc.relation.references[2] Pistun Ye., Matiko H., Krykh H., Matiko F. Structural Modeling of Throttle Diagrams for Measuring Fluid Parameters. Metrology аnd Measurement Systems. 25 (4), 659–673 (2018).
dc.relation.references[3] Nitecki J.-P., Patrick S. U.S. Patent 6,073,483. Device for Measuring the Viscosity of Fluid (2000).
dc.relation.references[4] Clarke P. G., Murphy M. P. U.S. Patent 9,612,183 B2. Modular Capillary Bridge Viscometer (2017).
dc.relation.references[5] Trainoff S. P. U.S. Patent 7,331,218 B2. Capillary Bridge Viscometer and Method for Measuring Specific Viscosity (2008).
dc.relation.references[6] Teplukh Z., Dilay I., Stasiuk I., Tykhan M., Kubara I. Design of linear capillary measuring transducers for low gas flow rates. Eastern-European Journal of Enterprise Technologies. 6/5 (96), 25–32 (2018).
dc.relation.references[7] Stasiuk I. Gas Dynamical Capillary Flowmeters of Small and Micro Flowrates of Gases. Energy Engineering and Control Systems. 1 (2), 117–126 (2015).
dc.relation.references[8] Pistun Ye., Matiko H., Krykh H., Matiko F. Synthesizing the Schemes of Multifunctional Measuring Transducers of the Fluid Parameters. Eastern-European Journal of Enterprise Technologies. 6/5 (90), 13–22 (2017).
dc.relation.references[9] Tomaszewska-Wach B., Rzasa M. R., Majer M. Measurement of two-phase gas-liquid flow using standard and slotted orifice. Informatics, Control, Measurement in Economy and Environment Protection. 9 (4), 30–33 (2019).
dc.relation.references[10] Drevetskiy V., Klepach M. The Intelligent System for Automotive Fuels Quality Definition. Informatics, Control, Measurement in Economy and Environment Protection. 3 (3), 11–13 (2013).
dc.relation.references[11] Tepliukh Z. M. Mathematical modeling of gas-hydro-dynamic throttle bridge measuring diagrams. Automatics. 3, 38–42 (1985), (in Russian).
dc.relation.references[12] Drevetskiy V. V., Kvasnikov V. P. Optimizing the geometry of throttle dividers of gas-hydro-dynamic measuring diagrams. Collection of scientific works of VIKNU. 16, 18–23 (2008), (in Ukrainian).
dc.relation.references[13] Pistun Y., Matiko H., Krykh H. Mathematical Models of Throttle Elements of Gas-hydrodynamic Measuring Transducers. Energy Engineering and Control Systems. 5 (2), 94–107 (2019).
dc.relation.references[14] Sutera S. P., Skalak R. The History of Poiseuille’s Law. Annual Review of Fluid Mechanics. 25, 1–19 (1993).
dc.relation.references[15] Nagornyi V. Hydraulic and Pneumatic Systems. Publishing house “Lan” (2021), (in Russian).
dc.relation.references[16] Trofimov I. L., Boychenko S. V., Landar I. O. Review of the current state and prospects for the use of jet fuels. Science-intensive technologies. 4 (48), 521–533 (2020), (in Ukrainian).
dc.relation.references[17] Steffe J. F. Rheological methods in food process engineering. USA, Freeman Press (1996).
dc.relation.references[18] Livak-Dahl E., Sinn I., Burns M. Microfluidic Chemical Analysis Systems. Annual Review of Chemical and Biomolecular Engineering. 2, 325–353 (2011).
dc.relation.references[19] ISO 5168:2005. Measurement of fluid flow – Procedures for the evaluation of uncertainties. Geneva, International Organization for Standardization (2005).
dc.relation.references[20] Mrowiec A. Uncertainty Assessment for Determining the Discharge Coefficient C for a Multi-Opening Orifice. Applied Science. 10, 8503 (2020).
dc.relation.references[21] Golijanek-Jedrzejczyk A., Swisulski D., Hanus R., Zych M., Petryka L. Estimating the uncertainty of the liquid mass flow using the orifice plate. EPJ Web of Conferences. 143, 02030 (2017).
dc.relation.referencesen[1] Liu G., Yan B., Chen G. Technical review on jet fuel production. Renewable and Sustainable Energy Reviews. 25, 59–70 (2013).
dc.relation.referencesen[2] Pistun Ye., Matiko H., Krykh H., Matiko F. Structural Modeling of Throttle Diagrams for Measuring Fluid Parameters. Metrology and Measurement Systems. 25 (4), 659–673 (2018).
dc.relation.referencesen[3] Nitecki J.-P., Patrick S. U.S. Patent 6,073,483. Device for Measuring the Viscosity of Fluid (2000).
dc.relation.referencesen[4] Clarke P. G., Murphy M. P. U.S. Patent 9,612,183 B2. Modular Capillary Bridge Viscometer (2017).
dc.relation.referencesen[5] Trainoff S. P. U.S. Patent 7,331,218 B2. Capillary Bridge Viscometer and Method for Measuring Specific Viscosity (2008).
dc.relation.referencesen[6] Teplukh Z., Dilay I., Stasiuk I., Tykhan M., Kubara I. Design of linear capillary measuring transducers for low gas flow rates. Eastern-European Journal of Enterprise Technologies. 6/5 (96), 25–32 (2018).
dc.relation.referencesen[7] Stasiuk I. Gas Dynamical Capillary Flowmeters of Small and Micro Flowrates of Gases. Energy Engineering and Control Systems. 1 (2), 117–126 (2015).
dc.relation.referencesen[8] Pistun Ye., Matiko H., Krykh H., Matiko F. Synthesizing the Schemes of Multifunctional Measuring Transducers of the Fluid Parameters. Eastern-European Journal of Enterprise Technologies. 6/5 (90), 13–22 (2017).
dc.relation.referencesen[9] Tomaszewska-Wach B., Rzasa M. R., Majer M. Measurement of two-phase gas-liquid flow using standard and slotted orifice. Informatics, Control, Measurement in Economy and Environment Protection. 9 (4), 30–33 (2019).
dc.relation.referencesen[10] Drevetskiy V., Klepach M. The Intelligent System for Automotive Fuels Quality Definition. Informatics, Control, Measurement in Economy and Environment Protection. 3 (3), 11–13 (2013).
dc.relation.referencesen[11] Tepliukh Z. M. Mathematical modeling of gas-hydro-dynamic throttle bridge measuring diagrams. Automatics. 3, 38–42 (1985), (in Russian).
dc.relation.referencesen[12] Drevetskiy V. V., Kvasnikov V. P. Optimizing the geometry of throttle dividers of gas-hydro-dynamic measuring diagrams. Collection of scientific works of VIKNU. 16, 18–23 (2008), (in Ukrainian).
dc.relation.referencesen[13] Pistun Y., Matiko H., Krykh H. Mathematical Models of Throttle Elements of Gas-hydrodynamic Measuring Transducers. Energy Engineering and Control Systems. 5 (2), 94–107 (2019).
dc.relation.referencesen[14] Sutera S. P., Skalak R. The History of Poiseuille’s Law. Annual Review of Fluid Mechanics. 25, 1–19 (1993).
dc.relation.referencesen[15] Nagornyi V. Hydraulic and Pneumatic Systems. Publishing house "Lan" (2021), (in Russian).
dc.relation.referencesen[16] Trofimov I. L., Boychenko S. V., Landar I. O. Review of the current state and prospects for the use of jet fuels. Science-intensive technologies. 4 (48), 521–533 (2020), (in Ukrainian).
dc.relation.referencesen[17] Steffe J. F. Rheological methods in food process engineering. USA, Freeman Press (1996).
dc.relation.referencesen[18] Livak-Dahl E., Sinn I., Burns M. Microfluidic Chemical Analysis Systems. Annual Review of Chemical and Biomolecular Engineering. 2, 325–353 (2011).
dc.relation.referencesen[19] ISO 5168:2005. Measurement of fluid flow – Procedures for the evaluation of uncertainties. Geneva, International Organization for Standardization (2005).
dc.relation.referencesen[20] Mrowiec A. Uncertainty Assessment for Determining the Discharge Coefficient C for a Multi-Opening Orifice. Applied Science. 10, 8503 (2020).
dc.relation.referencesen[21] Golijanek-Jedrzejczyk A., Swisulski D., Hanus R., Zych M., Petryka L. Estimating the uncertainty of the liquid mass flow using the orifice plate. EPJ Web of Conferences. 143, 02030 (2017).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectкінематична в’язкість
dc.subjectгустина
dc.subjectньютонівська рідина
dc.subjectмодель
dc.subjectдросель
dc.subjectвимірювальний перетворювач
dc.subjectkinematic viscosity
dc.subjectdensity
dc.subjectNewtonian fluid
dc.subjectmodel
dc.subjectthrottle
dc.subjectmeasuring transducer
dc.titleModeling throttle bridge measuring transducers of physical-mechanical parameters of Newtonian fluids
dc.title.alternativeМоделювання дросельних мостових вимірювальних перетворювачів фізико-механічних параметрів ньютонівських рідин
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n3_Pistun_Ye_P-Modeling_throttle_bridge_515-525.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n3_Pistun_Ye_P-Modeling_throttle_bridge_515-525__COVER.png
Size:
470.54 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: