Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure

dc.citation.epage168
dc.citation.issue2
dc.citation.spage158
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКостробій, П.
dc.contributor.authorРижа, І.
dc.contributor.authorМаркович, Б.
dc.contributor.authorKostrobij, P.
dc.contributor.authorRyzha, I.
dc.contributor.authorMarkovych, B.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-27T08:51:49Z
dc.date.available2020-02-27T08:51:49Z
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.description.abstractЗапропоновано обґрунтовану математичну модель опису реакційно-дифузійних процесів двосортної суміші, адсорбованих на поверхні каталізатора частинок. Показано, що для реакції окиснення чадного газу (СО) запропонована модель узагальнює одновимірну модель ZGB. Досліджено кінетику окиснення СО на стійких щодо перебудови гранях кристала платини (Pt).
dc.description.abstractA substantiated mathematical model is proposed for describing the reaction-diffusion processes of a binary mixture of particles adsorbed on a catalyst surface. It is shown that the proposed model generalizes the one-dimensional ZGB model for carbon monoxide (CO) oxidation reaction. The kinetics of CO oxidation is investigated on the facets of platinum (Pt) crystal, which are stable with respect to reconstruction.
dc.format.extent158-168
dc.format.pages11
dc.identifier.citationKostrobij P. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure / P. Kostrobij, I. Ryzha, B. Markovych // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 158–168.
dc.identifier.citationenKostrobij P. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure / P. Kostrobij, I. Ryzha, B. Markovych // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 158–168.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46137
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (5), 2018
dc.relation.references1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah “metal–gaz”. Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).
dc.relation.references2. Kato H. S., Okuyama H., Yoshinobu J., Kawai M. Estimation of direct and indirect interactions between CO molecules on Pd(110). Surf. Sci. 513 (2), 239–248 (2002).
dc.relation.references3. Imbihl R., Ertl G. Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews. 95 (3), 697–733 (1995).
dc.relation.references4. March N. H. Chemical Bonds Outside Metal Surfaces. Plenum Press, New York (1986).
dc.relation.references5. Yucel S. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures. Phys. Rev. B. 39 (5), 3104–3115 (1989).
dc.relation.references6] Kostrobij P., Markovych B., Vasylenko A., Tokarchuk M., Rudavskij Y. Nonequilibrium statistical Zubarev’s operator and Green’s functions for an inhomogeneous electron gas. Condens. Matter Phys. 9 (3), 519–533 (2006).
dc.relation.references7. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).
dc.relation.references8. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications (2000).
dc.relation.references9. Wilf M., Dawson P. The adsorption and desorption of oxygen on the Pt(110) surface; A thermal desorption and LEED/AES study. Surf. Science. 65 (2), 399–418 (1977).
dc.relation.references10. Gasser R. P. H., Smith E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1, 457–458 (1967).
dc.relation.references11. Kafarov V. V. Metody kibernetiki v himii i himicheskoj tehnologii. Himija, Moskva (1976), (in Russian).
dc.relation.references12. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986).
dc.relation.references13. Kostrobij P., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018).
dc.relation.references14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990).
dc.relation.references15. Kuchling H. Taschenbuch der Physik. Carl Hanser (Verlag) (2014).
dc.relation.references16. Spiel C., Vogel D., Suchorski Y., DrachselW., Schl¨ogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: Local reaction kinetics by PEEM. Catalysis Letters. 141 (5), 625–632 (2011).
dc.relation.references17. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Science. 107 (1), 207–219 (1981).
dc.relation.references18. Ertl G., Neumann M., Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Science. 64 (2), 393–410 (1977).
dc.relation.references19. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf. Science. 107 (1), 220–236 (1981).
dc.relation.references20. Gland J. L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12 (111)×(111) surfaces. Surf. Science. 93 (2–3), 487–514 (1980).
dc.relation.references21. Kinne M., Fuhrmann T., Zhu J. F., Whelan C. M., Denecke R., Steinr¨uck H. P. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120 (15), 7113–7122 (2004).
dc.relation.references22. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
dc.relation.references23. Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995).
dc.relation.references24. Hoyle R. Pattern Formation. New York, Cambridge University Press (2006).
dc.relation.references25. Ehsasi M., Matloch M., Frank O., Block J. H. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91 (8), 4949–4960 (1989).
dc.relation.referencesen1. Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesi v sistemah "metal–gaz". Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).
dc.relation.referencesen2. Kato H. S., Okuyama H., Yoshinobu J., Kawai M. Estimation of direct and indirect interactions between CO molecules on Pd(110). Surf. Sci. 513 (2), 239–248 (2002).
dc.relation.referencesen3. Imbihl R., Ertl G. Oscillatory Kinetics in Heterogeneous Catalysis. Chemical Reviews. 95 (3), 697–733 (1995).
dc.relation.referencesen4. March N. H. Chemical Bonds Outside Metal Surfaces. Plenum Press, New York (1986).
dc.relation.referencesen5. Yucel S. Theory of ortho-para conversion in hydrogen adsorbed on metal and paramagnetic surfaces at low temperatures. Phys. Rev. B. 39 (5), 3104–3115 (1989).
dc.relation.referencesen6] Kostrobij P., Markovych B., Vasylenko A., Tokarchuk M., Rudavskij Y. Nonequilibrium statistical Zubarev’s operator and Green’s functions for an inhomogeneous electron gas. Condens. Matter Phys. 9 (3), 519–533 (2006).
dc.relation.referencesen7. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).
dc.relation.referencesen8. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications (2000).
dc.relation.referencesen9. Wilf M., Dawson P. The adsorption and desorption of oxygen on the Pt(110) surface; A thermal desorption and LEED/AES study. Surf. Science. 65 (2), 399–418 (1977).
dc.relation.referencesen10. Gasser R. P. H., Smith E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1, 457–458 (1967).
dc.relation.referencesen11. Kafarov V. V. Metody kibernetiki v himii i himicheskoj tehnologii. Himija, Moskva (1976), (in Russian).
dc.relation.referencesen12. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986).
dc.relation.referencesen13. Kostrobij P., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018).
dc.relation.referencesen14. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990).
dc.relation.referencesen15. Kuchling H. Taschenbuch der Physik. Carl Hanser (Verlag) (2014).
dc.relation.referencesen16. Spiel C., Vogel D., Suchorski Y., DrachselW., Schl¨ogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: Local reaction kinetics by PEEM. Catalysis Letters. 141 (5), 625–632 (2011).
dc.relation.referencesen17. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Science. 107 (1), 207–219 (1981).
dc.relation.referencesen18. Ertl G., Neumann M., Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Science. 64 (2), 393–410 (1977).
dc.relation.referencesen19. Campbell C., Ertl G., Kuipers H., Segner J. A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface. Surf. Science. 107 (1), 220–236 (1981).
dc.relation.referencesen20. Gland J. L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12 (111)×(111) surfaces. Surf. Science. 93 (2–3), 487–514 (1980).
dc.relation.referencesen21. Kinne M., Fuhrmann T., Zhu J. F., Whelan C. M., Denecke R., Steinr¨uck H. P. Kinetics of the CO oxidation reaction on Pt(111) studied by in situ high-resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 120 (15), 7113–7122 (2004).
dc.relation.referencesen22. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
dc.relation.referencesen23. Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995).
dc.relation.referencesen24. Hoyle R. Pattern Formation. New York, Cambridge University Press (2006).
dc.relation.referencesen25. Ehsasi M., Matloch M., Frank O., Block J. H. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91 (8), 4949–4960 (1989).
dc.rights.holderCMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University
dc.subjectкаталітична реакція окиснення
dc.subjectреакційно-дифузійна модель
dc.subjectматематичне моделювання реакційно-дифузійних процесів
dc.subjectreaction of catalytic oxidation
dc.subjectreaction-diffusion model
dc.subjectmathematical modeling of reaction-diffusion processes
dc.subject.udc538.9
dc.titleMathematical model of carbon monoxide oxidation: influence of the catalyst surface structure
dc.title.alternativeМатематична модель оксидації чадного газу: вплив структури поверхні каталізатора
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2018v5n2_Kostrobij_P-Mathematical_model_of_158-168.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2018v5n2_Kostrobij_P-Mathematical_model_of_158-168__COVER.png
Size:
367.56 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.02 KB
Format:
Plain Text
Description: